作者:LucianaiB
还在为海量微信聊天记录头疼?担心错过关键信息?现在,有了编程智能体+MCP,AI帮你自动提取、总结聊天内容,轻松捕捉重点!
核心功能亮点展示:
- 智能摘要:自动分析聊天记录,提炼核心话题、待办事项和关键决策,告别手动翻找。
- 多场景适配:无论是工作群讨论、亲友闲聊还是课程学习,AI都能精准分类并生成简洁总结。
- 隐私保护:本地化处理或加密传输,确保你的聊天数据安全无忧。
- 一键导出:支持将摘要同步至笔记或待办清单,高效管理碎片信息。
再也不用担心遗漏重要消息——AI替你读聊天记录,你只管轻松行动!
效果展示
介绍
通义灵码编程智能体 + Qwen3 模型 + 开源 chatlog 工具,实现对微信聊天记录的自动提取与智能总结。让 AI 成为你的聊天记录助手,再也不用担心错过微信群里的干货内容!
通义灵码
✅ 前提:通义灵码现在已全面支持 MCP 协议接入!
智能体模式能力
- 自主决策:可自主规划任务流程,根据开发者需求描述,决定使用何种工具及执行何种操作来完成编码任务,无需开发者在每个步骤进行确认或干预。
- 环境感知:能自动感知工程框架、技术栈、所需代码文件、错误信息等工程内信息,无需开发者手动添加工程上下文,使任务描述更轻松。
- 工具使用:可自主使用工程检索、文件编辑、终端等十多种内置编程工具,包括文件查找、文件读取、目录读取、工程内语义符号检索、文件修改、错误获取、终端执行等,还可根据返回结果决策下一步执行计划。
与 MCP 工具的结合
- 支持 MCP 工具使用:通义灵码编程智能体支持 MCP 工具,根据用户需求描述,通过模型自主规划,实现 MCP 工具调用。
- 深度集成魔搭 MCP 广场:魔搭 MCP 广场是国内最大的 MCP 中文社区,通义灵码与其深度集成,涵盖开发者工具、文件系统、搜索、地图等十大热门领域 2400+MCP 服务,全面拓宽 AI 编码助手能力边界,让编码更贴合开发者工作流程。
- 支持开发者配置 MCP 工具:开发者可自由配置 MCP 工具,使通义灵码更符合个人或团队的工作习惯和需求。
Qwen3
🧠 阿里云百炼平台上线 Qwen3 模型,体验简单,还免费送百万 Token!
在上月,开源通义千问 Qwen3 模型上架阿里云百炼,可直接在阿里云百炼平台上进行体验。阿里云百炼平台提供每个模型免费获得各 100 万 Token。
目前通义千问 Qwen3 模型不仅可以在阿里云百炼平台上直接体验模型,智能体和工作流内也已接入 Qwen3 模型,可以将 Qwen3 结合知识库,插件,MCP 能力,创建更强大的 AI Agent。
开源 chatlog
📂 github地址:https://github.com/sjzar/chatlog?tab=readme-ov-file
chat log tool, easily use your own chat data. 聊天记录工具,轻松使用自己的聊天数据。
具有的功能:
- 从本地数据库文件获取聊天数据
- 支持 Windows / macOS 系统
- 支持微信 3.x / 4.0 版本
- 提供 Terminal UI 界面 & 命令行工具
- 提供 HTTP API 服务,支持查询聊天记录、联系人、群聊、最近会话等信息
- 支持 MCP SSE 协议,可与支持 MCP 的 AI 助手无缝集成
- 支持多媒体消息,支持解密图片、语音
- 支持自动解密数据,简化使用流程
- 支持多账号管理,可在不同账号间切换
前置准备
- 安装并更新至最新版本的通义灵码。
- 在灵码中选择 Qwen3 模型作为当前模型。
- 前往 Chatlog Releases 页面,下载适合你系统的版本并解压。
https://github.com/sjzar/chatlog/releases
- 运行
chatlog.exe
。
- 依次点击“获取数据密钥” → “解密数据” → “开启 HTTP 服务”。
- 在开启后,我们打开网站:http://127.0.0.1:5030/,若成功加载页面如下,则说明配置成功。
- 在 Lingma 的 MCP 服务中,点击右上角的
+
,然后选择手动添加,在类型选择 SSE,名称输入:chatlog,服务地址输入:http://127.0.0.1:5030/sse。
- 出现如下界面即代表 MCP 工具添加成功,可查看其支持的功能。
AI 对话
查询所有群聊数量
请使用 chatlog mcp 帮我查询一下,我一共有多少个群
当看到 “238” 这个数字时才发现,自己不知不觉竟然加入了这么多群!如果想进一步查看每个群的名称,只需点击“已执行 MCP 工具”,即可查看详细列表,方便判断是否需要退群或整理群聊。
总结特定成员在某群的发言内容
请使用 chatlog mcp 帮我总结一下微信群叫*群的人【时间A到时间B】分享的内容
这里我使用一个经常分享的大佬:请使用 chatlog mcp 帮我总结一下微信群叫影刀深圳-优秀开发者交流群的群主晴天【2025-05-01 到 2025-05-24】分享的内容
可以看到,他先调用了时间,然后再群聊中筛选了记录,成功的总结了大佬的语录,并且进行了一个详细的输出。以后就不用怕错过群主的分享(全是干货)。
未来展望
这只是一个简单的场景演示,实际上这套方案可以拓展出更多更强大的应用场景:
- 个性化画像分析:基于某人在多个群或会话中的发言,AI 可以分析其兴趣、习惯、专业能力,帮助 HR 或项目负责人快速了解合作人。
- 自动纪要生成:在企业群、项目群中,AI 可定时提取会议记录、任务指令和关键节点,生成结构化周报、日报,显著减轻人工总结负担。
- 舆情监测与风险识别:对公司群内聊天进行关键词监控,及时识别敏感信息或风险言论,为企业合规管理提供支持。
- 多语言支持与翻译总结:针对跨国团队,AI 可识别并翻译群聊内容,自动输出多语言总结,提升协作效率。
- 时间线回溯与知识沉淀:支持按时间线回溯历史聊天记录,构建群聊知识图谱,助力企业信息管理与知识沉淀。
AI 不再只是一个“助手”,而正在成为理解你社交数据、整理重要信息、优化信息流的“智能秘书”。
总结
作为这次方案的实践者和分享者,我深刻体会到 AI 在信息管理领域的巨大潜力。通过通义灵码搭配 Qwen3 模型,再结合强大的 chatlog 工具,我成功打造了一套“智能提取 + 精准总结”微信聊天记录的自动化流程。不仅实现了对微信群内关键内容的快速抓取,还能精准总结特定成员在某段时间内的发言,真正解决了“重要内容被埋没”的痛点。
更让我惊喜的是,这一整套流程的集成和使用门槛非常低。通义灵码的智能体能力极大地降低了操作复杂度,chatlog 提供的 HTTP API 和 MCP 接口又让集成变得顺滑高效。在实际应用中,无论是快速统计我加了多少群,还是提取群主“晴天”分享的干货语录,AI 都能精准、高效地完成。
这次实践也让我看到了更多可能:比如未来做个性化发言画像、自动生成群纪要,甚至用于团队管理与知识沉淀。这不仅是一套工具组合,更是一个全新的工作流革命。AI 不再只是工具,而正在成为我们的“信息秘书”——帮我们理解、筛选和组织每天面对的海量社交内容。
如果你也常常苦于群消息太多、错过关键信息,那就赶紧上手体验吧!
点击此处,下载体验!