为了提供现代化、高效且跨平台一致的 Vibe Coding 交互界面,其实auto coder 一开始就没有选择主流的基于 vs code插件的方案 而是先打造了一个AI辅助编程引擎,早期用户应该体验过直接使用底层引擎执行yaml 文件的历史。
后面交互层面,为了能适配所有 IDE,我们先做了基于 terminal 的版本 auto-coder.chat ,获得最大灵活性。
反向的,auto-coder.chat 可以让用户迅速用起来,获得大量反馈,反过来不断优化引擎。
引擎solid 后,我开始迭代现在的 auto-coder.web 相比市面上所有基于web 的交互产品,我们除了标准IDE 模式以外,还独立设计了需求看版以及纯 agent模式。web版本会有更好的交互体验,实现编程心流。当然,我人最高效的肯定还是terminal 版本的。
auto-coder.chat + auto-coder.web 已经可以让开发者能在不同设备上获得流畅一致的 Vibe Coding 对话和代码审查体验,也验证了 auto-coder 引擎的能力,当前的auto-coder引擎目前核心在项目记忆和理解方向做突破。
当然了,我从来不认为 AI辅助编程的核心壁垒是牢固的,AI辅助编程自身是冰山之上的东西,我认为冰山之下的操作根本的。
auto-coder 冰山之下,有能够具备支持代码和文档的全球首款 llm native 的 RAG 引擎auto-coder.RAG , 在 RAG之下,我们自研了AI存储系统 Byzer Storage ,一个使用了诸多业界最新成果的引擎:比如支持CPU 向量化能力的JDK21,Lucene,分布式王者Ray,分布式存储JuiceFS 等。
在大模型管理层面,我也自研了 byzer-llm 一个非常有创新性的大模型中间件,具有世界上最友好的大模型prompt编程APi,同时还具备部署大模型,预训练和微调大模型。
这些才是冰山之下,类似苹果软硬一体实现最大化协作效率的基础设施体系。
所以,辅助编程仅仅是一个辅助编程么?
给大家看看我们官网的一个产品列表截图: