软件是AI驱动开发的,而软件自身也是运行在AI之上。这是软件从大模型诞生后发生的最大变化。
然而,你是不是还苦恼于 AI 辅助编程工具无法生成正确的langchain 代码?你是不是还在苦于写prompt, 以及为了如何管理prompt 以及 如何和大模型联通而脑瓜子疼?
这一切, byzerllm 将从根子上帮你解决。来看,我们是如何基于 cursor + byzerllm 开发一个基于大模型的类Google翻译服务的。
真一句话,可复现
在 cursor 输入如下信息:
阅读 /Users/allwefantasy/projects/llm_friendly_packages/github.com/allwefantasy/byzer-llm/README.md 使用 byzerllm 以及 fastapi 库开发一个Google 翻译API, 开发完成后,给出启动服务的命令以及测试用的 curl 指令, 其中可用模型名称为 v3_chat。
然后cursor 就生成了一个 web 服务:
按cursor 说的方式启动服务,然后用他给的curl 命令运行:
一个基于大模型的翻译服务,就这么生成了,整个过程你无需关心 prompt,无需关系和大模型如何交互,一切都是自动生成,单次成功率接近 100%。
再来试一个 AI 辅助编程 auto-coder.web
同样输入前面的话:
阅读 /Users/allwefantasy/projects/llm_friendly_packages/github.com/allwefantasy/byzer-llm/README.md 使用 byzerllm 以及 fastapi 库开发一个Google 翻译API, 开发完成后,给出启动服务的命令以及测试用的 curl 指令, 其中可用模型名称为 v3_chat。
这个时候会生成一个完整的Google翻译后端项目:
根据auto-coder.web 提示启动服务:
访问接口得到服务结果:
成功率几乎100%(都是一次过)。
未来的软件一定内核都是AI,而当前的AI 库诸如langchain都无法被AI辅助编程很好的使用。而 byzerllm 只需要一份文档(不到 10000token)
就能让 AI 辅助编程工具自动帮你完成所有和大模型相关的工作,成功率极高,用户无需再 写prompt, 无需再关心如何访问大模型,一切 AI辅助编程工具和 byzerllm 库都帮你搞定。
最后,完整教程在这
不知不觉,我们已经在另外一个维度做AI辅助编程了。
我们是如何从底层助力和颠覆AI 辅助编程工具开发应用?请看我们的两个case:
1. 基于 Cursor + byzerllm 开发基于大模型的类 Google 翻译服务
https://uelng8wukz.feishu.cn/wiki/HULvwHxaCiXv4lk5b0bcQkTcnMc?fromScene=spaceOverview
2. 基于 auto-coder.web + byzerllm 开发基于大模型的类Google翻译服务
https://uelng8wukz.feishu.cn/wiki/Nd1Vw1ewQi2gkfkVqSccvJ6AnHb?fromScene=spaceOverview
tips, 同样基于 sonnet 3.7 ,在这次表现中, auto-coder.web 效果比 cursor 还惊艳。