智能体开发:AI原生应用开发-提示工程原理与实战

🛒 🚀👉京东图书:https://item.jd.com/14976580.html

本书结合 AI 原生应用落地的大量实践,系统讲解提示工程的核心原理、相关案例分析和实战技巧,涵盖以下内容:提示工程概述、结构化提示设计、NLP 任务提示、内容创作提示、生成可控性提示、提示安全设计、形式语言风格提示、推理提示、智能体提示等。

本书的初衷不是告诉读者如何套用各种预设的提示模板,而是帮助读者深入理解和应用提示设计技巧,以找到决定大语言模型输出的关键因子,进而将提示工程的理论知识应用到产品设计中。

前言

AI 原生(artificial intelligence native)应用是指在设计开发应用程序时,以人工智能(artificial intelligence,AI)技术为出发点,将 AI 作为核心驱动力设计和构建的新应用。这种应用在设计和架构层面就与 AI 技术深度融合,使得 AI 成为应用程序基础且关键的部分,而非仅仅作为附加功能。

自 OpenAI 发布 GPT-3.5 以来,大语言模型(large language model,LLM)的发展日新月异。在这一波技术浪潮中,提示工程(prompt engineering)崭露头角,它不仅标志着人类与机器交互方式的一次根本性变革,更是开启了 AI 原生应用的新篇章。回溯人工智能的发展历程,可以看到人类与机器交互方式的不断演变。

  • 初期硬件设计:专门化与局限性

在机器被发明的初期,人们需要针对每个特定的任务设计专门的硬件,这是一个高度专业化和高成本定制化的阶段。那时的机器功能单一、操作复杂,每次更改都需要重新设计和制造硬件,缺乏灵活性和通用性。

  • 通用计算机的兴起:指令的力量

随着通用计算机的出现,情况发生了翻天覆地的变化。人们开始通过输入特定的指令来改变机器的行为,从而使其能够适应不同的任务。这一阶段的显著特点是机器的通用性和可编程性大幅提升,用户不再需要专门的硬件来完成特定的工作,而是可以通过编程来指挥计算机执行各种复杂的任务。

  • 深度学习时代:数据驱动的智能

深度学习技术的广泛应用进一步推动了机器智能的发展。在这一阶段,机器能够模仿训练数据集的行为,因此,设计数据集成为指导机器完成特定任务的新方式。这一时期的特点是数据驱动的智能化,即通过大量的数据训练来使机器具备某种能力或知识。

  • 大语言模型的时代:自然语言的崛起

大语言模型的出现,为我们提供了一种全新的交互方式——通过自然语言提示(prompt)来引导其完成任务。这种方式既经济又直观,极大地降低了使用 AI技术的门槛,使得更多人能够轻松地利用 AI 来完成各种任务,实现了人机交互的自然化和智能化。

然而,正如任何技术革新一样,大语言模型和提示工程在 AI 原生应用的开发实践中也遇到了一系列挑战。一方面,大语言模型被过度夸大,许多不适合由大语言模型处理的问题也被纳入其中,这种无根据的乐观和不切实际的期望,为早期 AI 原生应用的开发者带来了不少困扰。另一方面,在将大语言模型与业务应用结合初步尝试中,因大语言模型在效果、性能、可控性,以及内容安全等方面存在的局限而陷入了进退两难的境地。

作为一线从业者,我深知大语言模型蕴含着推动生产力变革的巨大潜能,但要发挥这种潜能,关键在于使用者具有优秀的驾驭能力。在利用大语言模型进行 AI 原生应用开发的过程中,我深刻体会到“好答案”往往源自好问题”的朴素真理。然而,如果提出“好问题”的能力仅仅依赖于大量、重复的实践,而无法将其沉淀为可传承的行业知识和通用方法,那么这将成为 AI 原生应用落地的阻碍。正是基于这样的考虑,我决定撰写本书,分享我的实践经验,期望能与更多从业者共同进步,推动行业的持续发展。

内容组织

本书围绕提示工程这一核心概念展开,详细阐述了提示工程的理论基础和实践应用。全书分为共 10章,每章都围绕一个核心主题展开,通过原理介绍、案例分析、实战技巧等多种方式,系统介绍提示工程在 AI 原生应用开发中的应用。

第 1 章:提示工程概述。本章围绕提示工程分析了 AI 原生应用的形态及落地的机遇与挑战,并从开发人员的视角讲解了提示工程的本质、KITE 提示框架和提示调试技巧,为读者提供了一条入门提示工程的清晰路径。

第 2 章:结构化提示设计。本章探讨结构化提示设计的策略,包括结构引导设计、内容引导设计和提示编排设计。

第 3 章:NLP 任务提示。本章聚焦于如何运用提示工程技术引导大语言模型完成各类 NLP 任务,通过介绍文本生成、文本分类、信息抽取和文本整理任务,展示提示工程在 NLP 领域的潜力。

第 4 章:内容创作提示。本章专注于如何利用大语言模型进行高质量的内容创作,通过讲解影响创作质量的核心要素和一系列实用的基础创作与长文本创作提示技巧,为内容创作提供指导。

第 5 章:生成可控性提示。本章着重探讨如何控制大语言模型的输出,通过剖析可控性问题的分类和影响因素,从生成参数和对话控制、基于提示的可控设计到基于内容审查的可控设计方面总结多种有效的策略。

第 6 章:提示安全设计。本章专注于提示安全设计的重要性及相关挑战,通过分析数据泄露、提示注入攻击和越权攻击风险,介绍相应的防御措施。

第 7 章:形式语言风格提示。本章探讨形式语言风格提示在 AI 原生应用开发中的应用,介绍如何利用形式语言增强提示的准确度和表达力,以及如何利用大语言模型完成编码相关的任务。

第 8 章:推理提示。本章聚焦于大语言模型在推理方面的应用,特别是如何通过思维链技术来引导和提升大语言模型的推理能力,通过讲解基础思维链、进阶思维链、高阶思维链、尝试构建自己的思维链的相关提示方法,为读者提供理解和控制大语言模型推理过程的有效手段。

第 9 章:智能体提示。本章探讨智能体的概念、架构及核心组成部分,并介绍如何通过提示工程技术来构建和优化智能体。通过对控制端、感知端和行动端的详细讲解,本章为智能体的实际落地提供了指导。

第 10 章:展望未来。本章通过介绍 AI 原生应用的落地路径建议、效果评估方式及工程化问题,为读者提供 AI 原生应用未来发展的全面视角。本章不仅是对前面内容的补充和延伸,也是对本书的升华和总结。

主要特色

本书是一本包含了从入门到进阶、从原理到实践的提示工程系统学习资料。纵观全书内容,我们的核心不在于指导读者如何机械地应用各种预设的提示模板,而在于深入理解和量化这些提示技能。通过详细分析,找出了那些对大语言模型输出有着决定性影响的关键因子。这些因子一旦被理解和掌握,便能够指导我们将理论知识转化为实际的产品技术,从而推进AI原生应用技术的实际落地。

本书的内容有两大特色:

  • 系统性:从基础到进阶、从原理到实践,本书提炼了一套完整的知识体系和实践框架,有助于读者全面理解和掌握提示工程的技术和方法。

  • 实践性:书中包含大量的实践案例和技巧,帮助读者将所学应用于实际项目中。

适合读者

本书适合 AI 原生应用开发的从业者和研究人员,以及人工智能相关专业的教师和学生阅读。阅读本书,能够帮助他们洞察 AI 原生应用的最新趋势,熟练运用提示工程在 AI 原生应用开发中的实践技巧,进而为他们的研究和工作提供强有力的支持和专业指导。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

alphaAIstack

借AI之力,探索无限可能。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值