大数据之 Spark 提交作业的常用参数

本文详细介绍了如何使用ApacheSparkSubmit命令行参数来配置Spark应用的运行环境和行为,包括主类、集群地址、部署模式、内存和核心设置等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Apache Spark 提交作业时可以使用一系列参数来配置应用运行环境和执行行为。以下是一些常见的Spark Submit命令行参数:

./bin/spark-submit \
--class <主类名> \
--master <集群管理器地址> \
--deploy-mode <部署模式> \
--executor-memory <每个Executor的内存大小> \
--executor-cores <每个Executor的核心数> \
--num-executors <启动Executor的数量> \
--driver-memory <Driver程序的内存大小> \
--driver-cores <Driver程序的核心数> \
--conf <自定义Spark配置项,如spark.shuffle.manager, spark.sql.shuffle.partitions等> \
<应用程序 jar 包、python egg 或 .py 文件路径> \
[应用参数]

详细解释:

  • --class: 指定要运行的应用程序的主类(对于Java/Scala应用)。

  • --master: 指定Spark集群的URL,例如spark://hostname:portyarnlocal[*](本地模式并使用所有可用核心)。

  • --deploy-mode: 可以是clientcluster,指定Driver程序运行的位置。在client模式下,Driver运行在提交任务的节点上;在cluster模式下,Driver运行在集群内部的一个worker节点上。

  • --executor-memory: 设置每个Executor进程使用的内存量,比如2g表示2GB。

  • --executor-cores: 设置每个Executor使用的CPU核心数。

  • --num-executors: 指定在集群中启动Executor的数量。

  • --driver-memory: 为Driver分配的内存大小。

  • --driver-cores: 为Driver分配的CPU核心数。

  • --conf: 用于设置Spark配置属性,例如调整shuffle行为、日志级别等。

  • <应用程序jar包、python egg或.py文件路径>: 提交给Spark运行的实际应用程序代码位置。

此外,还有许多其他高级选项和配置,可以根据具体需求进行设置。这些参数确保了Spark应用能够在各种环境下高效且可控地运行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值