A dataset for breast cancer histopathological image classification

本文介绍了一项关于乳腺癌图像分类的研究,包含7909例图像数据,分为恶性与良性两类。研究中使用了包括LBP在内的多种特征,并通过KNN、QDA等四种网络进行分类。此外还探讨了不同放大倍数对分类效果的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

7909例乳腺癌图像,包括恶性和良性两类。82个病人

2480良性,5429恶性肿瘤样本

样本来自2014年一年内的一个clinical study

病例学家标注

多种放大倍数: 40×,100×,200×,400×

具体分类:四种良性,四种恶性


采用了一系列特征,包括LBP等。

采用了四种网络:KNN,QDA(quadratic linear analysis), svm, random foreasts of decision trees

对于病人P, N(rec) images为正确分类的数据。则 patient score = Nrec/Np

recognition rate = 求和patient score/ total number of patients

实验:

1、寻找最佳放大倍数

2、寻找最佳的特征

3、DSC(dynamic selection of classifiers):为每个sample选择一个最佳分类器







评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值