关卡任务
本关任务主要包括:
- InternLM2-Chat-1.8B 模型的部署(基础任务)
- InternLM-XComposer2-VL-1.8B 模型的部署(进阶任务)
- InternVL2-2B 模型的部署(进阶任务)
创建开发机
我们选择 10% 的开发机,镜像选择为 Cuda-12.2。在输入开发机名称后,点击创建开发机。
环境配置
我们首先来为 Demo 创建一个可用的环境。
# 创建环境
conda create -n demo python=3.10 -y
# 激活环境
conda activate demo
# 安装 torch
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 安装其他依赖
pip install transformers==4.38
pip install sentencepiece==0.1.99
pip install einops==0.8.0
pip install protobuf==5.27.2
pip install accelerate==0.33.0
pip install streamlit==1.37.0
Cli Demo 部署 InternLM2-Chat-1.8B 模型
首先,我们创建一个目录,用于存放我们的代码。并创建一个 cli_demo.py
。
mkdir -p /root/demo
touch /root/demo/cli_demo.py
然后,我们将下面的代码复制到 cli_demo.py
中。
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name_or_path = "/root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='cuda:0')
m