详解pytorch中循环神经网络(RNN、LSTM、GRU)的维度

首先如果你对RNNLSTMGRU不太熟悉,可点击查看。

RNN

torch.nn.rnn详解

torch.nn.RNN(input_size,
hidden_size,
num_layers=1,
nonlinearity=‘tanh’,
bias=True,
batch_first=False,
dropout=0.0,
bidirectional=False,
device=None,
dtype=None)

原理
在这里插入图片描述

参数详解

  • input_size – 输入x中预期特征的数量

  • hidden_size – 隐藏状态h中的特征数量

  • num_layers – 循环层数。例如,设置num_layers=2 意味着将两个LSTM堆叠在一起形成堆叠 LSTM,第二个 LSTM 接收第一个 LSTM 的输出并计算最终结果。默认值:1

  • nonlinearity– 使用的非线性。可以是’tanh’或’relu’。默认:‘tanh’

  • bias– 如果False,则该层不使用偏差权重b_ih和b_hh。默认:True

  • batch_first – 如果,则输入和输出张量以(batch, seq, feature)True形式提供,而不是(seq, batch, feature)。请注意,这不适用于隐藏状态或单元状态。默认:False

  • dropout – 如果非零,则在除最后一层之外的每个LSTM层的输出上 引入Dropout层,dropout 概率等于 。默认值:0.0

  • bidirectional – 如果True, 则成为双向LSTM。默认:False

RNN输入输出维度

rnn = nn.RNN(10, 20, 2)
input = torch.randn(5, 3, 10)
h0 = torch.randn(2, 3, 20)
output, hn = rnn(input, h0)

可以看到输入是xh_0,h_0可以是None。如果batch_size是第0维度,需设置batch_first=True
输出则是outputh_n。h_n存了每一层的t时刻的隐藏状态值

# Efficient implementation equivalent to the following with bidirectional=False
def forward(x, h_0=None
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值