关于大语言模型LLM插件和Agent的一些想法

What is a Plugin?

plugin is a software add-on that is installed on a program, enhancing its capabilities. For example, if you wanted to watch a video on a website, you may need a plugin to do so. If the plugin is not installed, your browser will not understand how to play the video.

插件是安装在程序上的软件附加组件,目的是增强其功能,核心是形成围绕基础软件的生态,而这个逻辑放到大语言模型上也是成立的,大语言模型通过插件增强了其能力边界,如实时股票搜索、知识库搜索等功能,来形成围绕大模型基础能力的生态,以适应在不同场景中形成解决方案。

ChatGPT的插件

类似讯飞星火的插件

百度千帆大模型平台的插件

What is agent in ChatGPT

GPTs will continue to get more useful and smarter, and you’ll eventually be able to let them take on real tasks in the real world. In the field of AI, these systems are often discussed as “agents”. We think it’s important to move incrementally towards this future, as it will require careful technical and safety work—and time for society to adapt. We have been thinking deeply about the societal implications and will have more analysis to share soon.

未来,GPT(人工智能系统)将变得更加智能和实用,最终你将能够让它们在现实世界中承担真实的任务。在人工智能领域,这些系统通常被称为“代理人”。我们认为,向着这个未来逐步前进是很重要的,因为它需要仔细的技术和安全工作,以及时间让社会适应。

在车载场景中类似车内代驾(自动驾驶),在智能家具场景类似智能管家,在客户场景类似私人客户,在智慧医疗场景类似私人医生,等等,未来我们生活中会有不同的Agent来完成特定场景的特定任务。

本文提出了LLM-based Agent的总体概念框架,由大脑、感知、行动三个关键部分组成

模拟代理社会概述。整个框架分为两个部分:代理和环境。(1) 左:在个体层面。(2) 中: 一个代理可以与其他代理组成群体。(3) 右: 环境包含所有可用资源。对于单个代理来说,其他代理也是环境的一部分。(4) 代理能够通过感知和行动与环境互动。

未来LLM+Agent会带来在ToB、ToC和ToG场景更多的想像空间,来重新定义我们在信息世界中的沟通方式,如果能与硬件结合,可以重新定义我们在物理世界中的人机交互方式。

参考:

1. What is a Plugin?

2. ChatGPT plugins

3. 《综述:全新大语言模型驱动的Agent》——4.5万字详细解读复旦NLP和米哈游最新Agent Survey - 知乎

### 大模型 Agent 实现机制 大模型 Agent 技术的核心在于利用大规模预训练语言模型的强大泛化能力推理能力,结合外部工具环境交互能力,从而实现自主决策与执行的任务目标。以下是关于其实现机制的关键部分: #### 1. **核心组件** - **大模型作为大脑** 大型语言模型LLM)充当 Agent 的核心计算单元,负责理解输入信息并生成相应的响应或指令。这些模型经过海量数据的训练,具备强大的上下文理解生成能力[^2]。 - **记忆模块** 记忆对于 Agent 来说至关重要,因为它允许 Agent 维持长期状态并与历史对话保持一致性。常见的记忆管理方案包括 Conversation Token Buffer Memory Vector Store Retriever 等技术[^4]。前者通过缓存最近的历史记录来减少上下文长度的压力,后者则利用向量数据库检索相关内容以增强记忆效果。 - **工具调用接口** Agent 需要能够访问外部资源服务(如搜索引擎、API 接口或其他专用程序),这通常由插件形式提供支持。通过设计标准化协议,可以让 LLM 更方便地控制这些外设完成特定操作。 #### 2. **关键技术** - **思维链 (Chain-of-Thought)** 思维链是一种促进复杂逻辑推导的方法论,在每一步骤中逐步细化问题解决方案直至得出最终结论。这种方法有助于提高解决问题时的透明性准确性[^5]。 - **自我反思 (Self-Reflection)** 自我反思使得 Agents 能够回顾自己的表现并对错误进行修正优化。这种元认知过程增强了系统的鲁棒性以及自适应调整能力[^5]。 - **规划与分解任务** 将复杂的全局目标任务划分为若干个小阶段子任务,并按照一定顺序依次解决它们。此策略可以降低整体难度同时增加灵活性以便应对突发状况变化。 #### 3. **应用场景举例** 假设我们正在开发一款智能家居助手应用,则该系统可能涉及如下几个方面的工作流程: ```python def smart_home_agent(user_input, memory_state=None): # Step 1: Parse user input using NLP techniques. parsed_query = parse_natural_language(user_input) # Step 2: Retrieve relevant information from past interactions stored in the memory module. historical_data = retrieve_from_memory(memory_state) # Step 3: Generate an action plan based on current understanding and retrieved context. proposed_actions = generate_action_plan(parsed_query, historical_data) # Step 4: Execute actions via appropriate APIs or hardware controls. execute_commands(proposed_actions) return updated_system_status() ``` 以上伪代码展示了如何将用户的语音命令转化为具体的操作序列,并考虑到先前积累的经验教训来进行更优的选择判断。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值