
nlp
文章平均质量分 82
思通数科x
我们专注互联网开源数据智能处理,为用户提供“数据采集”、“数据标记”和“数据挖掘”三方面核心能力,以有效的方式使用互联网数据,提高生产力及决策能力。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
推荐使用AI开源平台:搭建GA领域案件分类的自动化处理
公安和消防机构面临着日益复杂的案件处理任务。为了提高案件管理和分派的效率,自然语言处理(NLP)和文本分类技术的应用变得尤为重要。本文将探讨如何通过自动化处理技术快速识别案件性质和关键特征,从而优化资源分配,确保案件得到及时而恰当的处理,并增强公共安全管理的响应速度和准确性。原创 2024-04-05 11:15:00 · 1087 阅读 · 0 评论 -
利用免费的开源AI引擎:打造企业级文档合规性智能审查平台
合同、法律文件、文档管理是企业和机构运营中不可或缺的一部分。随着文档数量的不断增加,传统的人工文档审查方式已经无法满足高效率和高质量的要求。文档合规性智能审查平台应运而生,它利用图像识别、自然语言处理等前沿技术,为文档审查工作带来了革命性的改变。本文将详细介绍该平台的核心功能、优势特点以及应用场景,展现其在提升文档管理效率与质量方面的关键作用。原创 2024-04-02 11:30:00 · 3736 阅读 · 0 评论 -
利用开源免费AI引擎:打造企业级文档档案智能检索系统
思通数科研发了一款多模态AI能力引擎,专注于提供自然语言处理(NLP)、情感分析、实体识别、图像识别与分类、OCR识别和语音识别等接口服务。该平台功能强大,支持本地化部署,并鼓励用户体验和开发者共同完善,以实现开源共享。原创 2024-04-02 11:15:00 · 1231 阅读 · 0 评论 -
免费的客服质检系统:开源多模态AI能力引擎平台
客服质量直接影响着企业的声誉和客户满意度。为了提升服务质量并优化客户体验,企业正寻求创新的解决方案。思通数科开源多模态AI能力引擎平台正是这样一种解决方案,它通过先进的语音识别、语音分析和情绪识别技术,为客服质检带来了革命性的升级。原创 2024-04-01 11:30:00 · 1617 阅读 · 0 评论 -
开源AI引擎:文本自动分类在公安及消防执法办案自动化中的应用
通过文本分类算法自动化处理文本数据,快速识别案件性质和关键特征,极大地提高了案件管理和分派的效率。本文将探讨这两种技术如何帮助执法机构优化资源分配,确保案件得到及时而恰当的处理,并增强公共安全管理的响应速度和准确性。例如:提取案件的关键信息,如嫌疑人特征、犯罪类型、案发时间地点等。通过利用先进的算法和模型,如预训练语言模型(例如BERT、GPT等),NLP系统能够理解案件文本的语义和上下文关系,从而更准确地识别和分类案件信息。原创 2024-03-27 11:58:29 · 1050 阅读 · 0 评论 -
开源AI引擎|信息抽取与文本分类项目案例:提升12345政务投诉处理效率
采集员案件上报流程是城市管理和问题解决的关键环节,涉及对案件类别的选择、案件来源的记录、详细案件描述的填写以及现场图片的上传。这一流程要求采集员准确、详细地提供案件信息,以便系统能够自动解析关键数据并填写相关内容,从而提高处理效率和准确性。系统对采集员上报的信息进行自动解析后,将推荐合适的处理流程和责任部门,确保案件得到及时有效的处理。同时,采集员将收到案件处理的反馈,了解进展情况,这一闭环流程有助于提升城市管理的质量和效率,同时保障问题能够得到妥善解决。原创 2024-03-27 10:21:28 · 1476 阅读 · 0 评论 -
开源项目&免费接口:智能AI能力平台,轻松实现情感分析
免费的自然语言处理、情感分析、实体识别、图像识别与分类、OCR识别、语音识别接口,功能强大,欢迎体验。语音视频&文本图片多模态AI能力引擎平台。微信扫码登录,立刻体验。原创 2024-03-22 09:30:00 · 1169 阅读 · 0 评论 -
项目介绍:OCR+NLP 提取信息并分析,可私有化部署
高准确性:结合最新的OCR和NLP技术,系统能够以高准确率识别和分析文本信息。高效率:自动化的信息提取和分析流程,显著提高工作效率,减少人工干预。定制化服务:根据企业的具体需求,提供定制化的解决方案,满足不同行业和场景的需求。数据安全:私有化部署确保企业数据的安全性,符合严格的数据保护法规。原创 2024-03-21 11:00:00 · 803 阅读 · 0 评论 -
开源文本挖掘引擎:情感分析|API接口|可私有化部署
中文的表达方式五花八门,比如成语、俗语、还有那些让人哭笑不得的双关语,这些都让情感分析变得复杂。再者,中文里头的情感表达很多时候得看上下文,一句话放在不同的情景里,意思可能就大相径庭了。而且,现在网络用语更新得飞快,新词层出不穷,情感分析的模型得不断学习才能跟上节奏。公司通过不断的技术革新和大量的数据训练,让中文情感分析越来越精准,应用场景也越来越广泛。如果你想要合作,得根据你的具体需求和预算,还有这些公司的技术实力和服务质量来决定。就算是正面或负面的情感,也有强弱之分,怎么判断这个也是个技术问题。原创 2024-03-19 15:58:23 · 327 阅读 · 0 评论 -
开源项目&免费接口:省市区街道地址自动补全
可以本地化部署,也可以云端SaaS调用,微信扫码即可登录。功能概述地址自动补全功能利用先进的人工智能算法,通过用户输入的地址片段,智能匹配并推荐完整的地址信息,极大提高了数据输入的准确性和效率。用户友好性。原创 2024-03-19 11:00:00 · 1133 阅读 · 0 评论 -
开源项目&免费接口 - 合同信息自动抽取|合同智能提取
高效准确的自动抽取功能我们的AI能力引擎平台采用先进的机器学习算法,能够高效准确地从合同文本中自动抽取关键信息。无论是合同条款、金额、日期还是双方当事人信息,都能迅速识别并整理,大幅提升工作效率。用户自定义抽取规则。原创 2024-03-18 13:15:00 · 2272 阅读 · 0 评论 -
免费开源:自动会议记录接口调用|语音识别接口|语音识别API
1.高效会议记录自动捕捉会议中的每一句话,确保记录的完整性和准确性,无需人工笔记。2.智能语音识别利用先进的语音识别技术,将会议内容实时转换为文字,提高记录的效率。3.关键信息高亮自动识别并高亮会议中的关键决策和行动项,便于团队成员后续追踪和执行。4.多语言支持能力。原创 2024-03-17 12:44:56 · 864 阅读 · 0 评论 -
免费接口调用 招标信息自动抽取|招标信息|招标数据解析接口
一款多模态AI能力引擎,专注于提供自然语言处理(NLP)、情感分析、实体识别、图像识别与分类、OCR识别和语音识别等接口服务。该平台功能强大,支持本地化部署,并鼓励用户体验和开发者共同完善,以实现开源共享。1.模型算法介绍:采用深度学习算法,如卷积神经网络(CNN),特点在于能够高效处理和识别文本数据。2.模型识别的准确性:准确率达到95%,召回率超过90%,确保信息抽取的高效率和高可靠性。3.海量数据训练样本:使用超过TB级别的商业文档和公开数据集进行训练,确保模型的广泛适用性。原创 2024-03-16 23:02:10 · 1615 阅读 · 0 评论 -
智能化文本管理:自动分类技术在多领域的关键应用案例介绍
开源软件推荐AI多模态能力平台: 免费的自然语言处理、情感分析、实体识别、图像识别与分类、OCR识别、语音识别接口,功能强大,欢迎体验。免费的自然语言处理、情感分析、实体识别、图像识别与分类、OCR识别、语音识别接口,功能强大,欢迎体验。文本自动分类技术是一种高效处理大量文本数据的关键技术,它通过将文本内容自动归类到预定义的类别中,极大地提高了信息管理和检索的效率。随着互联网信息量的爆炸性增长,文本自动分类技术在多个领域展现出其重要价值和广泛应用。原创 2024-03-10 15:45:40 · 1385 阅读 · 0 评论 -
智能物流新篇章:快递行业信息抽取技术的应用与革新
在快递物流行业中,信息抽取技术的应用场景广泛且关键,它通过自动化的方式从非结构化的文本数据中提取出有用的信息,极大地提高了物流行业的效率和服务质量。今天先给大家推荐一个开源项目,多模态AI能力引擎平台: 免费的自然语言处理、情感分析、实体识别、图像识别与分类、OCR识别、语音识别接口,功能强大,欢迎体验。多模态AI能力引擎平台: 免费的自然语言处理、情感分析、实体识别、图像识别与分类、OCR识别、语音识别接口,功能强大,欢迎体验。原创 2024-03-10 11:15:00 · 552 阅读 · 0 评论 -
信息抽取在旅游行业的应用:以景点信息抽取为例
信息抽取技术与知识图谱相结合,可以实现景点信息的深度挖掘和知识图谱的构建,进一步提高了旅游领域对景点信息的理解和利用能力。总之,在旅游行业,信息抽取技术在景点信息抽取方面发挥着重要作用,有效地解决了游客在获取景点信息方面的痛点,为提高旅游体验和满意度做出了贡献。通过这些技术,可以有效地从非结构化文本中抽取景点信息,从而为旅游领域提供准确、及时、全面的景点信息。以景点信息抽取为例,信息抽取技术需要从景点名称、景点描述、景点图片等非结构化文本中,挖掘出结构化的景点信息。原创 2024-03-09 22:08:40 · 1016 阅读 · 0 评论 -
项目案例:多标签文本分类技术在司法行业的应用与挑战
根据项目需求收集和整理数据集,对数据进行预处理,包括清洗、分词、去停用词、词形还原和向量化等步骤,以确保数据质量。本文将介绍多标签文本分类技术在司法行业的具体应用案例,探讨其如何助力法律专业人士处理繁杂的案件资料,优化司法流程,以及提升判决的公正性和透明度。在多标签文本分类技术中,我们的目标是将文本数据分配给多个相关的标签,而不是单一的类别。多模态AI能力引擎平台: 免费的自然语言处理、情感分析、实体识别、图像识别与分类、OCR识别、语音识别接口,功能强大,欢迎体验。下面将详细介绍这些核心技术。原创 2024-03-09 17:05:57 · 937 阅读 · 0 评论 -
案例介绍:汽车维修系统的信息抽取技术与数据治理应用(开源)
能够理解输入文本的上下文信息,并生成与输入相关的、结构化的输出信息,从而极大地提高了信息处理的效率和准确性。微调后的模型能够在这些特定类型的文本中识别出关键实体,如车型、部件编号、生产批次等,并能够抽取出它们之间的关系,如部件之间的装配关系、故障与维修措施之间的对应关系等。通过这些技术的应用,我们不仅提高了信息处理的效率,还为汽车制造商提供了更深入的洞察,帮助他们在激烈的市场竞争中保持领先地位。通过这些技术的应用,我们为汽车行业的发展贡献了新的动力。原创 2024-03-03 11:32:15 · 1685 阅读 · 0 评论 -
自然语言:信息抽取技术在CRM系统中的应用与成效
客户反馈的处理时间缩短了40%,同时,通过精确的实体和关系抽取,我们的产品推荐准确率提高了30%,客户满意度显著提升。同时,我们使用了`ON DELETE CASCADE`约束,这意味着如果关联的`feedback_id`被删除,那么与之相关的`Entities`、`Relationships`和`Events`记录也将被自动删除,以保持数据的一致性。此外,我们还需要考虑索引的创建,以提高查询效率。例如,我们能够根据客户的年龄和职业推荐合适的产品,或者根据客户反馈中提到的服务问题,及时调整我们的服务流程。原创 2024-02-28 19:06:13 · 893 阅读 · 0 评论 -
革新汽车设计:信息抽取技术在数据驱动决策中的应用
这些信息的整合,使得我们的知识库不仅包含了静态的数据,还具备了动态的事件序列,为汽车设计的持续改进提供了强大的支持。在项目后期,事件抽取技术的应用使我们能够追踪设计过程中的关键里程碑,理解设计变更对整体性能的影响,从而为持续改进提供了数据支持。通过构建动态的知识库,我们为汽车设计的持续创新奠定了坚实的数据基础,推动了整个行业的技术进步。在训练过程中,模型的性能通过准确率、召回率、F1分数等指标进行评估,根据评估结果,可以对模型进行调整,如调整学习率、优化网络结构或增加训练数据,以提高信息抽取的准确性。原创 2024-02-28 19:30:00 · 874 阅读 · 0 评论 -
信息抽取技术在医疗领域的应用:提升数据处理效率与决策支持
通过自动化处理,我们能够从海量的非结构化文本中提取关键信息,进而支持更深层次的数据分析和决策支持,这对于医疗行业的现代化转型具有重要意义。在这个项目中,我们面对的是一家医院的挑战,他们需要从大量的医疗文档中提取关键信息,以便更好地管理患者信息和优化临床决策。在我们的项目中,由于技术原理的复杂性,我们选择了一个现成的自然语言处理(NLP)平台来简化信息抽取的过程。这个平台提供了一套完整的工具,让我们能够通过Web界面完成数据的标注、训练、评估预测,以及模型的发布和预测,而无需编写任何代码。原创 2024-02-28 11:15:00 · 1602 阅读 · 0 评论 -
信息抽取(UIE)技术:让保险理赔信息处理流程便捷高效
在理赔过程中,用户上传的理赔资料,如医疗记录、事故报告等,需要被准确解读以提取关键信息,如疾病诊断、治疗费用等,这些信息对于案件的准确理赔至关重要。为了解决这一问题,我们引入了一种创新的保险案件信息抽取的置信度评估方法,该方法通过深度学习技术,不仅提取关键信息,还对信息抽取过程的特征进行分析,从而提高了置信度评估的准确性。这些资料中蕴含着大量的关键信息,比如患者的疾病诊断、治疗费用、事故责任方等,但这些信息往往分散在文本的不同部分,而且格式各异,给信息的提取和整合带来了巨大的挑战。原创 2024-02-27 10:55:34 · 1827 阅读 · 0 评论