torch训练简单例子

125 篇文章 ¥59.90 ¥99.00

import torch
import torch.nn as nn
import torch.optim as optim

# 定义一个简单的模型
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.fc = nn.Linear(10, 5)

    def forward(self, x):
        return self.fc(x)

# 创建模型实例
model = MyModel()

# 检查GPU是否可用
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# 将模型移动到GPU
model.to(device)

# 创建优化器
optimizer = optim.SGD(model.parameters(), lr=0.1)

# 定义随机数生成的样本数量
batch_size = 32
# 定义训练轮数
num_epochs = 10

# 执行训练循环
for epoch in range(num_ep

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

andeyeluguo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值