【大模型】梯度累加技术教学理解

125 篇文章 ¥59.90 ¥99.00

梯度累加技术教学理解

梯度累加(Gradient Accumulation)是一种在深度学习训练中使用的技术,主要用于解决GPU内存不足的问题,同时也能模拟更大的batch size训练效果。

基本概念

梯度累加的核心思想是:

  1. 不是每次前向传播后都立即更新模型参数
  2. 而是进行多次前向传播和反向传播,累积梯度
  3. 在累积一定次数后,才进行一次真正的参数更新

工作原理

  1. 常规训练流程

    • 前向传播 → 计算损失 → 反向传播 → 参数更新
    • 每个batch都会更新一次参数
  2. 梯度累加流程

    • 前向传播1 → 计算损失1 → 反向传播1 (累积梯度1)
    • 前向传播2 → 计算损失2 → 反向传播2 (累积梯度1+2)
    • 前向传播N → 计算损失N → 反向传播N → 参数更新 (使用累积的梯度1+2+…+N)
    • 清空梯度,重新开始累积

实现方式

在PyTorch中的典型实现代码:

model
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

andeyeluguo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值