梯度累加技术教学理解
梯度累加(Gradient Accumulation)是一种在深度学习训练中使用的技术,主要用于解决GPU内存不足的问题,同时也能模拟更大的batch size训练效果。
基本概念
梯度累加的核心思想是:
- 不是每次前向传播后都立即更新模型参数
- 而是进行多次前向传播和反向传播,累积梯度
- 在累积一定次数后,才进行一次真正的参数更新
工作原理
-
常规训练流程:
- 前向传播 → 计算损失 → 反向传播 → 参数更新
- 每个batch都会更新一次参数
-
梯度累加流程:
- 前向传播1 → 计算损失1 → 反向传播1 (累积梯度1)
- 前向传播2 → 计算损失2 → 反向传播2 (累积梯度1+2)
- …
- 前向传播N → 计算损失N → 反向传播N → 参数更新 (使用累积的梯度1+2+…+N)
- 清空梯度,重新开始累积
实现方式
在PyTorch中的典型实现代码:
model