吾名爱妃,性好静亦好动。好编程,常沉浸于代码之世界,思维纵横,力求逻辑之严密,算法之精妙。亦爱篮球,驰骋球场,尽享挥洒汗水之乐。且喜跑步,尤钟马拉松,长途奔袭,考验耐力与毅力,每有所进,心甚喜之。
吾以为,编程似布阵,算法如谋略,需精心筹谋,方可成就佳作。篮球乃团队之艺,协作共进,方显力量。跑步与马拉松,乃磨炼身心之途,愈挫愈勇,方能达至远方。愿交志同道合之友,共探此诸般妙趣。诸君,此文尚佳,望点赞收藏,谢之!
这篇文章主要探讨在LangChain框架中连接外部的数据做数据增强的能力。我们的生活周围充斥着各种各样的数据,例如本地的文档、网页上的知识、企业内部的知识库、各类研究报告、软件数据库以及聊天的历史记录等。这些数据,无论是广泛的互联网数据,还是具有特定价值的其他内部数据,都是构建和优化大语言模型的重要资源。
数据增强模块的相关概念
你可能会问,既然已经有了强大的大语言模型,例如OpenAI的GPT-4,为什么还需要连接外部数据呢?原因其实很简单,那就是大语言模型的知识是有限的。以GPT-4为例,它的数据集只训练到2023年4月,也就是说,这个时间之后的数据并没有被模型学习和理解。所以,到2023年下半年,仍会看到ChatGPT在其界面上显示:ChatGPT可能会产生关于人、时间、地点或事件不准确的信息。这是因为模型在训练数据集之外的知识领域中,其预测能力是受限的。
除此之外,还需要个性化的知识,比如企业的内部知识。想象一下,如果你有一个企业,你可能希望你的聊天机器人能够理解和回答一些关于你的产品或服务的具体问题,这些问题的答案往往需要依赖你的企业内部的专有知识。大语言模型无法直接访问这些知识,因此需要将这些知识以某种方式连接到大语言模型。
连接外部数据不仅可以填补大语言模型的知识缺失,而且还能让开发的应用程序更加可靠。当模型需要回答一个问题时,它可以