Cherry Studio MCP实用教程

Cherry Studio MCP实用教程
🖥️ Cherry Studio MCP 实用教程
“Cherry Studio 是一款支持多模型的AI助手,支持知识库管理、MCP Servers管理,为用户提供了全面的AI能力。”

Cherry Studio MCP Servers 管理
支持的传输类型
Stdio: 标准输入输出
SSE: 服务器发送事件
Streamable HTTP: 可流式传输的HTTP
模型供应商
支持多种模型供应商的协同工作
示例:硅基流动的DeepSeek R1模型服务
获取硅基流动API Key
访问 硅基流动官网 完成注册与登录。
在模型广场选择模型,了解详情。
前往API密钥页面 API密钥页面,创建并获取自己的API Key。
Cherry Studio 配置硅基流动大模型
前往Cherry Studio的Settings。
在Model Provider页面,选择“SiliconFlow”。
输入你的API Key,单击Check按钮测试连接。
Cherry Studio 管理MCP Servers
前往Settings页面,点击MCP Servers。
创建或管理MCP Servers。
安装提示:若右上角有警示按钮,提示安装uvx和bun,单击按钮并根据安装向导进行安装。
完成后可在MCP Servers页面中创建新的MCP Server。
配置Fetch MCP Server
Fetch MCP Server提供网页内容抓取功能。步骤如下:

在MCP Servers设置页面中,单击“Add Server”,选择“Quick Create”。
输入以下内容并单击Save按钮保存:
Name: Fetch
Type: Standard Input/Output (stdio)
Command: uvx
Arguments: mcp-server-fetch
启动Fetch MCP Server
在MCP Server列表中,单击右侧的开关按钮启动Fetch MCP Server。
使用Fetch MCP Server
新建话题,选择硅基流动的deepseek-ai/DeepSeek-R1模型。
在聊天输入框下方确认启用Fetch,输入消息如“请抓取https://docs.siliconflow.cn/cn/userguide/introduction 的内容”,单击发送按钮。
配置Filesystem MCP Server
Filesystem MCP Server允许直接访问文件系统。步骤如下:

在MCP Servers设置页面中,单击“Add Server”,选择“Quick Create”。
输入以下内容并单击Save按钮保存:
Name: Filesystem
Type: Standard Input/Output (stdio)
Command: npx
Arguments:
-y
@modelcontextprotocol/server-filesystem
<你授权管理的文件夹绝对路径>
请确保在Arguments字段设置参数时,每个参数都在单独一行。

使用Filesystem MCP Server
新建话题,选择硅基流动的deepseek-ai/DeepSeek-R1模型,在聊天输入框确认启用Filesystem。
输入消息如“请列出当前目录下的文件”,单击发送按钮。
文件管理操作示例
列出文件: 输入消息“请列出当前目录下的文件”。
重命名文件: 输入消息“将该文件改名为.bak文件,作为备份”。
确认文件状态: 输入消息确认备份文件状态。
当前目录内容确认结果
当前仅有备份文件: /Users/wyang14/Documents/WCP-Experiment/mcp_introduction_summary.md.bak
类型: 文件 (FILE)
这是您创建的备份文件,原始文件 mcp_introduction_summary.md 已成功重命名为备份文件。
目录内容确认
文件名 类型 说明
mcp_introduction_summary.md.bak 文件 备份文件,原始文件已重命名
当前目录没有其他文件或子目录,只有您创建的 bak 备份文件。如需恢复原始文件,可以将此备份文件重命名为 mcp。
在这里插入图片描述

### 关于 Cherry Studio MCP 的开发工具与教程 Cherry Studio 是一款开源的人工智能助手工具,能够通过 API 访问多种大模型服务[^2]。其核心功能之一是支持开发者快速构建基于自然语言处理的应用程序。MCP(Model Control Protocol)作为 Cherry Studio 提供的一种协议标准,主要用于管理和控制不同类型的大型语言模型及其交互过程[^1]。 #### 1. **官方文档** 对于 MCP 协议的具体实现细节以及如何集成到项目中,建议优先查阅 Cherry Studio 官方文档中的高级基础部分[MCP-1](https://docs.cherry-ai.com/advanced-basic/mcp-1)。这部分文档详细描述了 MCP 的工作原理、接口定义以及实际应用场景。 #### 2. **社区资源** 除了官方文档外,还可以参考一些第三方博客文章或技术分享来加深理解。例如,在 CSDN 上有一篇关于 Cherry Studio 使用的文章提供了详细的入门指南。虽然该文章未专门提及 MCP 部分的内容,但它可以帮助初学者更好地了解整个平台的功能架构。 #### 3. **实践案例** 如果希望进一步探索 MCP 在真实环境下的应用方式,则可以通过尝试 DeepSeek 和其他 LLMs 的接入实验来进行学习[^3]。具体操作如下: - 下载并安装最新版本的 Cherry Studio; - 进入设置页面完成必要的 API 密钥配置; - 测试不同的模型调用逻辑以验证 MCP 是否正常运行。 以下是简单的 Python 脚本示例用于演示如何初始化连接: ```python from cherry_studio import ModelController def initialize_mcp(api_key, model_name="deepseek"): controller = ModelController() controller.configure(api_key=api_key) response = controller.query(model=model_name, prompt="Hello world!") return response if __name__ == "__main__": api_key = "your_api_key_here" result = initialize_mcp(api_key) print(result) ``` 此代码片段展示了如何创建 `ModelController` 实例并通过它发送查询请求给指定的大规模预训练模型。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值