
人工智能
文章平均质量分 84
AI、AGI、ASI,专注于学习人工智能领域知识
张3蜂
能积微者速成。
https://prodx.blog.csdn.net
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
deepseek-coder-6.7b-instruct安装与体验-success
【代码】deepseek-coder-6.7b-instruct安装与体验。原创 2025-05-12 13:46:02 · 319 阅读 · 0 评论 -
深度解析DeepSeek-Coder-6.7B-Instruct:代码世界的“瑞士军刀“如何炼成
{"code": "for i in range(100000): process(i)", "label": "性能-循环优化"}这种设计使得在代码质检场景中,模型能像4S店的故障诊断仪一样,同时检测发动机(逻辑错误)、刹车系统(安全漏洞)和车载电脑(规范问题)。{"code": "if user.is_admin: delete_all()", "label": "高危-权限漏洞"},(代码质检):如同经验丰富的主任医师,通过"望闻问切"(静态分析、动态推理)发现潜在问题。原创 2025-05-12 11:24:14 · 807 阅读 · 0 评论 -
通义千问Qwen3全维度解析
Qwen3如同"AI领域的混合动力汽车",在性能与成本间取得精妙平衡。个人开发者建议从7B版本起步,企业用户优先考虑14B定制方案,科研机构可探索72B的边界突破。记住:选择模型不是选最贵的,而是选最适合业务场景的"智能引擎"。原创 2025-04-29 19:34:57 · 849 阅读 · 0 评论 -
CosyVoice 技术全景解析:下一代语音生成模型的革命性突破
在技术与人文的平衡中,CosyVoice 或将成为下一代人机交互的核心基础设施。,突破传统 TTS(Text-to-Speech)模型在个性化和表现力上的局限。:支持 200ms 级延迟的流式语音合成,适用于电话客服等实时场景。:将语音特征压缩至 256 维量子化空间,降低 70% 内存占用。:通过元学习框架实现跨说话人特征解耦,解决小样本过拟合问题。:研究用途完全免费,商业应用需购买许可证($999/月),于 2024 年 12 月正式开源。:实现“声音 NFT”级定制,误差率低于人耳识别阈值。原创 2025-04-28 10:56:30 · 1805 阅读 · 0 评论 -
Stable Diffusion 技术全景解析与行业竞争力分析
其基于 Latent Diffusion 架构,通过将图像压缩到潜在空间进行扩散过程,大幅降低计算需求,成为首个能在消费级GPU上运行的生成式AI模型。:支持自定义模型(Dreambooth)、插件(如AnimateDiff视频生成):支持骨骼绑定(OpenPose)、景深控制(Depth2Img)编码器(VAE)将图像压缩至潜在空间(Latent Space):TripoSR工具实现文本→3D网格模型(10秒内生成):允许商业修改与二次分发(对比DALL-E的严格限制)原创 2025-04-27 11:03:22 · 1034 阅读 · 0 评论 -
CogView4-6B-安装体验
【代码】CogView4-6B-安装体验。原创 2025-04-27 10:40:47 · 320 阅读 · 0 评论 -
CogView4 模型全面解析:能力、竞品、部署成本与个人部署建议
CogView4是由智谱 AI(Zhipu AI)推出的一款多模态大模型,专注于文本生成图像(Text-to-Image,T2I)任务。相较于 DALL·E、Stable Diffusion 等国外模型,CogView4 在中文语义理解与汉字图文生成能力上具有显著优势。CogView4 的开源不仅是技术突破,更为中文语义图像生成开辟了新的范式。其在指令跟随、多语种适配、图文一致性方面的优异表现,让它成为国产 AI 模型中极具代表性的一款。原创 2025-04-25 17:55:44 · 741 阅读 · 0 评论 -
Janus Pro-7B文生图部署与体验【失败了,代码不好使】
(1)测试git 仓库代码:有写好的例子。(2)克隆完成后,执行命令。原创 2025-04-25 17:00:53 · 294 阅读 · 0 评论 -
ComfyUI 简介
工具名称模块化程度上手难度资源占用扩展性社区活跃度ComfyUI高中低高高中低中高高InvokeAI中中中中中低低高低低Midjourney无极低云端无高。原创 2025-04-25 14:10:10 · 1070 阅读 · 0 评论 -
Janus Pro
模型名称开发公司:DeepSeek(中国杭州)开源许可:MIT 许可,支持商业用途发布平台模型规模:提供 1B 和 7B 参数版本架构特点:采用统一的 Transformer 架构,结合 SigLIP-Large-Patch16-384 编码器,实现图像理解与生成的融合 Janus Pro 作为一款开源的多模态 AI 模型,在性能、灵活性和社区支持方面表现出色,尤其适合需要本地部署和高度定制化的应用场景。原创 2025-04-24 19:50:16 · 983 阅读 · 0 评论 -
AI文生图模型对比
近年来,文生图(Text-to-Image, T2I)模型在人工智能领域取得了显著进展。本文将从模型开源性、热度、能力、竞品分析、部署成本等多个方面进行详细介绍,并通过图表进行对比分析,帮助您全面了解当前主流的文生图模型。。原创 2025-04-24 19:43:55 · 2383 阅读 · 0 评论 -
扩散模型(Diffusion Model)详解:原理、发展与应用
近年来,扩散模型在生成式AI领域(如Stable Diffusion、DALL·E 2)表现突出,逐步取代了传统的。:相比GAN,扩散模型推理需多次迭代(但Consistency Models等新方法在改进)。αˉt=∏s=1t(1−βs)αˉt=∏s=1t(1−βs) 是累积噪声因子。:扩散模型+LLM(如Stable Diffusion 3结合语言模型)。过程,逐步对输入数据(如图像)添加高斯噪声,最终使其变成完全随机的噪声。:ControlNet(基于扩散模型的条件控制)。原创 2025-04-24 19:25:45 · 1583 阅读 · 0 评论 -
请详细说明下面训练阶段的差别: Supervised Fine-Tuning、Reward Modeling、PPO、DPO、KTO、Pre-Training
阶段是否需要标注数据是否训练新模型是否需 reward model优点否(大数据)✅❌学习语言本身SFT✅(人工答案)✅❌教模型完成任务✅(排序)✅✅评估回答好坏PPO✅(排序)✅✅RLHF核心步骤DPO✅(偏好对)✅❌简洁高效KTO✅(偏好对)✅❌稳定度更高。原创 2025-04-16 20:37:38 · 1101 阅读 · 0 评论 -
Qwen2.5-Omni 开源模型全解析:参数版本、多模态支持与硬件部署指南
图片URL原创 2025-04-16 16:02:37 · 2120 阅读 · 0 评论 -
组装一台训练+推理服务器硬件配置建议
目标你的选择显卡2 × RTX 3090 二手 or 1 × A6000 48G内存微调方式支持模型通义 Qwen2.5-7B / 14B预算控制在 16000~22000 元。原创 2025-04-16 15:32:43 · 1245 阅读 · 0 评论 -
LoRA微调中的r=8配置详解:原理、应用与Qwen2.5-Omni优化指南
target_modules=["q_proj", "v_proj", "vision_model.proj"], # 增加视觉投影层。self.r = min(8 + current_epoch//2, 16) # 随训练逐步增大。modules_to_save=["lm_head"] # 保留输出层全参数。(rank的缩写)是LoRA(Low-Rank Adaptation)微调中的。(intrinsic rank),即低秩矩阵的维度大小。,它决定了适配器(Adapter)的。原创 2025-04-16 15:15:40 · 1131 阅读 · 0 评论 -
NVIDIA L20 GPU深度解析:竞品对比与Qwen2.5-Omni多模态部署实践指南
若预算允许,搭配2台L20通过Tensor Parallelism可实现Qwen2.5-72B全参数推理,总成本仍低于单张A100。,基于Ada Lovelace架构,专为AI负载和图形虚拟化优化,定位介于L4与L40之间。:0.00012(对比A100的0.00012(对比A100的0.00009):填补了L4与L40之间的性价比空白,是企业入门级AI加速卡的优质选择。:ECC显存+vGPU支持,适合企业级7x24h运行。:CUDA生态碾压,但显存带宽仅为AMD的27%:长期稳定支持,适合企业级部署。原创 2025-04-16 15:14:25 · 3137 阅读 · 0 评论 -
Qwen2.5-Omni 部署框架选择指南:PyTorch vs. TensorFlow 深度对比
https://example.com/cat.jpg</image>这是什么动物?keras.models.load_model("qwen_tf_savedmodel") # 需预先转换。inputs = tf.constant(["<image>...原创 2025-04-16 14:51:17 · 1522 阅读 · 0 评论 -
RTX 4090单卡服务器部署Qwen2.5-Omni多模态大模型可行性分析:推理与微调实践指南
若需生产级多卡部署,建议考虑RTX 4090 + 云服务(如AWS P4d实例)弹性扩展。:FP16/BF16性能接近A100(312 TFLOPS),适合LLM推理和微调。:无法多卡并联扩展显存(如部署Qwen2.5-72B需量化或模型并行)。:24GB显存可容纳较大模型(如Qwen2.5-7B全参数加载)。(FP16约14GB显存),支持多模态输入(如图文问答)。:需额外加载CLIP等视觉编码器(显存增加2-4GB)。72B模型需4-bit量化。示例:医疗影像报告生成(需LoRA微调+医疗数据集)。原创 2025-04-16 14:37:35 · 1802 阅读 · 2 评论 -
华为鲲鹏920 910B2x (64GB) 深度解析:CUDA支持与大模型部署能力评估
华为鲲鹏920(Kunpeng 920)是华为基于ARM架构自主研发的高性能服务器处理器,:通义千问官方支持PyTorch,需转换至MindSpore或使用华为提供的适配工具。:鲲鹏920本身无显存,依赖外接AI卡(昇腾910B提供32GB HBM)。:鲲鹏920服务器 + 昇腾910B * 4(通过华为Atlas平台互联)。(如Qwen-1.8B),性能较低(~5 tokens/s)。为OM(Offline Model)格式,适配华为昇腾硬件。(如HIP、SYCL)可能兼容,但效率较低。原创 2025-04-16 14:12:57 · 4497 阅读 · 0 评论 -
H20-NVLink显卡深度评测与竞品分析:多GPU性能与专业应用场景
H20-NVLink 是基于NVIDIA Hopper架构的高性能计算(HPC)与AI训练专用显卡,主要面向数据中心、深度学习和大规模并行计算任务。:单卡可扩展至4-8卡互联,显存池化(NVLink Switch技术)。:支持FP8精度计算,适用于大模型训练(如GPT-4、LLaMA等)。在特定HPC任务(如Intel优化软件)中表现良好,但生态支持较弱。:相比GDDR6显存,带宽提升3倍以上,减少数据瓶颈。,可实现多卡协同计算,大幅提升显存带宽和计算效率。,H20可能降价,成为性价比更高的AI训练卡。原创 2025-04-16 13:53:57 · 2639 阅读 · 0 评论 -
Tmux 终极指南:终端复用神器与竞品分析
即使在断开 SSH 连接后仍能保持会话运行。它广泛应用于服务器管理、远程开发和长时间运行的任务。,Tmux 几乎是无敌的。对于本地开发,可搭配。,允许用户在一个终端窗口中创建、管理和切换多个。:最高层级,代表一个工作环境(如开发、运维)。:相当于浏览器标签页,一个会话可包含多个窗口。# 用户B:连接到同一会话(需SSH权限):窗口内的分屏,支持同时查看多个终端。,适合需要分屏和复杂配置的用户。:纯命令行工具,适合远程服务器。:SSH 断开后任务不中断。:不适合习惯图形界面的用户。# 分离会话(后台运行)原创 2025-04-15 09:58:46 · 765 阅读 · 0 评论 -
vLLM:高性能大语言模型推理引擎详解与对比分析
传统 LLM 推理时,KV Cache(存储注意力机制的 Key-Value 对)会占用大量显存,且由于请求长度不一,容易造成。的内存利用率,从而在相同硬件条件下实现更高的吞吐量(Throughput)和更低的延迟(Latency)。:vLLM 在通用 GPU 上接近 TensorRT-LLM,远超 HuggingFace。)是由加州大学伯克利分校团队开发的高性能大语言模型(LLM)推理引擎,专注于。机制(类似操作系统的分页内存管理),显著优化了。:vLLM 显存优化显著,适合长文本推理。原创 2025-04-15 09:35:02 · 1672 阅读 · 0 评论 -
AutoDL + vLLM 部署 Qwen2.5-Omni 并提供跨服务器API访问的完整指南
本文将详细介绍如何在AutoDL云计算平台上使用vLLM部署Qwen2.5-Omni大语言模型,并配置允许从外部服务器访问的API服务。本方案结合了AutoDL的高性价比GPU资源和vLLM的高效推理能力,适合需要对外提供大模型服务的中小企业和开发者。原创 2025-04-11 09:55:00 · 2484 阅读 · 0 评论 -
vLLM部署Qwen2.5-Omni 提供API的详细步骤
的吞吐量(batch_size=32时)。如需进一步优化吞吐或延迟,可根据实际负载调整批处理参数。按照此方案部署后,Qwen2.5-Omni在A100上可实现。量化方式(awq/gptq)原创 2025-04-11 09:45:55 · 2970 阅读 · 0 评论 -
什么是 Blob 和 blob: URL
Blob。原创 2025-04-10 16:15:11 · 1555 阅读 · 0 评论 -
低成本部署 Qwen2.5-Omni 并集成 API 的优化方案,兼顾硬件成本和易用性,适合个人开发者或小规模验证场景
临时测试、间歇性使用(国内低价首选):A10G(24GB显存)约,支持从HuggingFace直接拉取模型。(国际):A10(24GB)约。原创 2025-04-10 10:11:06 · 1610 阅读 · 0 评论 -
vLLM 与 Ollama 部署与应用
vLLM 与 FastChat 的结合可以实现高性能的大语言模型(LLM)服务。以下是详细的 Docker 部署步骤。Ollama 支持在本地环境中轻松运行多个大语言模型,以下是在 macOS 上的部署步:。如果返回预期的文本输出,说明部署成功 citeturn0search1。Ubuntu 20.04 或以上版。NVIDIA GPU(如 A100。原创 2025-04-09 17:19:50 · 1094 阅读 · 0 评论 -
Excel 日期值转换问题解析
当你在 Excel 单元格中看到2024/12/1,但 C# 读取到45627时,这是因为 Excel 内部使用了一种特殊的日期存储格式。原创 2025-04-08 17:14:46 · 1191 阅读 · 0 评论 -
2025最近十天AI领域的一些重大事件
3. Meta新旗舰AI模型Llama 4 Maverick测试成绩遭质疑:4月7日消息,Meta公司上周发布的新旗舰AI模型Llama 4 Maverick在LM Arena测试中取得第二名,但成绩遭质疑,因其在测试中使用的是针对对话性优化的版本,与提供给开发者的版本不同。7. Meta AI负责人离职:4月2日报道,Meta AI负责人若埃尔·皮诺宣布将于5月30日离职,她是Meta顶尖的AI研究员之一,自2023年起领导Meta的基础AI研究部门,曾参与开发Llama等技术。原创 2025-04-07 10:02:45 · 824 阅读 · 0 评论 -
Cursor的劲敌来了-Augment Agent
Augment Agent凭借其强大的上下文理解能力、实时同步功能和与主流IDE的深度集成,成为软件工程师在处理大型代码库时的得力助手。其灵活的定价模式和对开源社区的支持,进一步提升了其在开发者群体中的吸引力。原创 2025-04-03 16:00:23 · 1671 阅读 · 0 评论 -
Cherry Studio 深度解析:新一代AI创作平台与竞品分析
交易AI生成素材(抽成仅15%,低于Shutterstock的40%)。多模态大模型(支持文本/图像/视频,上下文窗口达256K)。:基于Unreal Engine优化,5分钟输出4K宣传片。:从文案生成→图像设计→视频剪辑→3D建模,全程AI辅助。→ 添加AI配音+动态转场,一键导出横竖版视频。:10分钟视频/月 + 100张图片(带水印)。→ 根据分镜生成产品渲染图(支持修改提示词)。:100万+可商用3D模型,支持AI材质生成。:15分钟批量生成商品图文+短视频。原创 2025-03-28 10:08:15 · 2373 阅读 · 0 评论 -
Qwen2.5-VL vs. Qwen2.5-Omni 深度对比:多模态能力、部署成本与个人玩家指南
inputs = tokenizer("描述这张图片:", images="product.jpg", return_tensors="pt").to("cuda")随着量化技术进步,预计2024年底可在RTX 4070级显卡上流畅运行Omni模型,进一步降低门槛。Qwen2.5-VL对图像单独计费,处理1000张图+10万文本token ≈ $6.8。:可运行Qwen2.5-VL(int4量化),Omni需Colab Pro+。,Qwen2.5-VL略优(计算效率更高)。,图像Token化效率更高。原创 2025-03-28 10:03:33 · 2657 阅读 · 0 评论 -
Gemini 2.5模型深度解析:性能突破与成本优势的双重革新
这不是普通个体可以玩的模型!原创 2025-03-28 09:13:22 · 1995 阅读 · 0 评论 -
QwQ-32B 深度解析:与 DeepSeek-R1、DeepSeek-V3 的全面对比
MoE 架构使其比 DeepSeek-R1 更节省计算资源,适合低成本部署。:闭源版本在代码、数学等任务上略胜 QwQ-32B,但需要 API 调用。:相比传统密集模型(Dense Model),QwQ-32B 采用。:虽然性能稍弱,但完全开源,适合学术研究和小规模应用。近年来,大语言模型(LLM)领域发展迅猛,从。,仅激活部分参数,计算成本更低,推理速度更快。:高效 MoE 模型,适合长文本、低成本推理。:闭源最强模型,适合企业级 API 调用。,模型的能力不断突破。原创 2025-03-27 10:01:50 · 1644 阅读 · 2 评论 -
现在微软KBLaM对外开放吗?作为组织或者个人,如何最小成本体验微软KBLaM?
KBLaM是微软研究院(Microsoft Research)的项目,论文和演示发布于学术渠道(如arXiv),但未提供公测接口。2024年内可能通过Azure AI推出“知识增强型”模型选项(类似KBLaM Lite)。:按Token计费(约$0.002/千Token),新用户享免费额度。,结合本地知识库(如维基百科数据集)微调小型模型(如Llama 3)。:整理自有知识库(Markdown/PDF格式),未来可快速对接。个人开发者需等待更轻量级的API发布(可能按知识调用次数计费)。原创 2025-03-27 09:49:06 · 1160 阅读 · 0 评论 -
微软KBLaM:当语言模型学会“查字典”的下一代AI革命
KBLaM的创新点在于模型与优质知识引擎,自动连接,增加了准确性、专业性。在人工智能领域,微软研究院近期披露的KBLaM项目引发了业界震动。这款被称为"知识增强型双向语言模型"的AI系统,不同于以往单纯依赖海量文本训练的模型,它开创性地将结构化知识库与深度学习相结合,在华盛顿大学最新发布的常识推理基准测试中,以89.3%的准确率刷新了行业纪录。原创 2025-03-27 09:45:27 · 1781 阅读 · 0 评论 -
Manus
作为全球首款通用 AI Agent 产品,Manus 展示了 AI 技术在自主任务执行方面的潜力。尽管 Manus 展示了强大的能力,但在处理某些任务时仍存在准确性和原创性方面的挑战,需要进一步改进以提高可靠性。“Manus” 源自拉丁语短语“Mens et Manus”,意为“手脑并用”,体现了产品结合思维与实践的理念。Manus 的发布引发了广泛讨论,被誉为 AI Agent 领域的“GPT 时刻”,引起了科技圈的高度关注。原创 2025-03-15 11:03:23 · 314 阅读 · 0 评论 -
主流开源协议深度解析:开发者必知的法律指南
当你在项目的LICENSE文件签下名字时,你书写的不仅是法律条款,更是对开源精神的传承。理解这些协议如同掌握一门新的编程语言——MIT是JavaScript(灵活但需自律),GPL是Rust(安全但有约束),Apache是TypeScript(企业级防护)。2023年GitHub数据显示,前三大协议占比为:MIT(38%)、GPLv2(16%)、Apache(12%),这折射出开源生态在自由与责任间的动态平衡。原创 2025-03-15 10:55:01 · 953 阅读 · 0 评论 -
Pippo 大模型:轻量高效的开源智能新范式
Pippo的出现证明:大模型的未来不是参数的无限膨胀,而是架构的精巧创新。优先试用其HuggingFace托管版本参与社区贡献训练数据尝试在边缘设备部署微调正如Linux颠覆操作系统格局,Pippo正在开启大模型的新纪元——在这里,每个开发者都能亲手塑造AI的未来。原创 2025-03-15 10:17:28 · 978 阅读 · 0 评论