yolov5模型转换部署安卓端

本文详细记录了如何在Android设备上部署经过ONNX转换和NCNN优化的YOLOv5模型,涉及模型导出、简化、转换为ncnn参数和bin文件,以及必要的文件修改和Android应用配置。适合开发者快速了解部署流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考
记录历经三天将自己的yolov5模型部署到Android安卓手机
YOLOv5学习记录(二): 模型转化及Android端部署
非常感谢以上作者~

  • 首先,安装onnx:
pip install onnx

pt转onnx

python export.py --data data/HGI_30_detection.yaml --weights runs/train/exp14/weights/best
.pt --train
  • 安装简化工具:
pip install onnx-simplifier

简化.onnx

python -m onnxsim runs\train\exp14\weights\best.onnx runs\train\exp14\weights\best-sim.onn
x

  • 下载onnx2ncnn.exe

ncnn-windows-vs-2019或2022

onnx 转param 、bin:使用 中 onnx2ncnn.exe文件进行转换,我为了方便直接将该文件放入train.py同级目录,如图:
在这里插入图片描述

onnx2ncnn.exe runs\train\exp14\weights\best-sim.onnx runs\train\exp14\weights\best.param runs\train\exp14\weights\best.bin

1.修改param文件
(1)将生成的yolov5s.bin、yolov5s.param文件放到assets文件夹下并替换原来的
在这里插入图片描述

(2)打开并编辑yolov5s.param文件
将Reshape 后面对应的0=6400、0=1600、0=400均修改为0=-1,如图
在这里插入图片描述

2.修改yolov5ncnn_jni.cpp文件
(1)将分类类别名与自己模型对应起来
在这里插入图片描述

(2)修改stride 16和32部分
将param文件中permute部分与stride部分中blob_name后面的数字对应起来, 也可以使用netron工具查看param中网络结构的permute的outputs
在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值