参考
记录历经三天将自己的yolov5模型部署到Android安卓手机
YOLOv5学习记录(二): 模型转化及Android端部署
非常感谢以上作者~
- 首先,安装onnx:
pip install onnx
pt转onnx
python export.py --data data/HGI_30_detection.yaml --weights runs/train/exp14/weights/best
.pt --train
- 安装简化工具:
pip install onnx-simplifier
简化.onnx
python -m onnxsim runs\train\exp14\weights\best.onnx runs\train\exp14\weights\best-sim.onn
x
- 下载onnx2ncnn.exe
onnx 转param 、bin:使用 中 onnx2ncnn.exe文件进行转换,我为了方便直接将该文件放入train.py同级目录,如图:
onnx2ncnn.exe runs\train\exp14\weights\best-sim.onnx runs\train\exp14\weights\best.param runs\train\exp14\weights\best.bin
1.修改param文件
(1)将生成的yolov5s.bin、yolov5s.param文件放到assets文件夹下并替换原来的
(2)打开并编辑yolov5s.param文件
将Reshape 后面对应的0=6400、0=1600、0=400均修改为0=-1,如图
2.修改yolov5ncnn_jni.cpp文件
(1)将分类类别名与自己模型对应起来
(2)修改stride 16和32部分
将param文件中permute部分与stride部分中blob_name后面的数字对应起来, 也可以使用netron工具查看param中网络结构的permute的outputs