LLVM,SLP向量化

1)基本概念

SLP向量化的目的是结合同一循环迭代内的多个计算操作,将多条标量计算合并为一条向量计算,在减少计算指令执行次数的同时,减少Code Size和寄存器压力。这个优化在LLVM中是默认开启状态,如果想要关闭可以使用 -fno-slp-vectorize 选项。SLP向量化的转换逻辑如下图,我们可以看到循环的迭代次数并没有发生变化,但是单次迭代内的四个标量运算合并成了一个向量运算。

上面不是循环展开后做的向量化吗?这个很正常吧?

2)SLP向量化的潜在目标计算需要满足两点:无数据依赖和相同操作。多条计算之间的操作数和结果不能有依赖关系,才能保证可以使用向量化并行执行。这些计算的运算符(如:加/减/乘/除)也需要相同。

3)示例:

A[i] = B[i] + 15;
A[i + 1] = B[i + 1] + 20;

上面也好理解,其实跟下标也有关系。

4)总结

本文介绍了一种编译器中常用的优化技术——自动向量化。自动向量化技术可以在中间代码层面,针对硬件的特性或用户的指示,对代码中的循环根据特定长度进行切分并将循环中的原标量计算操作替换为硬件支持的向量计算操作,发挥硬件的向量计算单元算力。熟悉自动向量化优化及诊断可以为提升目标代码性能提供非常大的帮助。

这个好像没有什么特别台,其实看下里面的汇编代码 就知道行不行。

<think>嗯,我现在需要了解LLVM中的循环强度削减(Loop Strength Reduction,LSR)和循环向量化(Loop Vectorization)这两个优化pass的顺序以及它们之间的相互影响。我对这两个概念还不是很熟悉,得先理清楚各自的作用,然后再看它们在编译过程中的顺序安排和如何相互影响。 首先,循环强度削减,我记得是一种优化技术,用于减少循环中计算操作的强度,比如把乘法转换成加法或者其他更简单的操作。比如在一个循环中,每次迭代都要计算一个数组的索引,可能用乘法来计算,LSR可能会将其替换为更高效的加法操作,从而减少计算开销。这样可以提高运行效率,尤其是在循环次数很多的情况下。 然后是循环向量化,这是利用现代处理器的SIMD(单指令多数据)指令,将循环中的多个迭代同时执行。比如,原本循环处理数组的每个元素,向量化后可以一次处理四个元素,这样循环次数减少,提高性能。但向量化需要循环结构满足一定条件,比如循环的迭代之间没有数据依赖,可以并行执行。 现在问题是这两个pass在LLVM中的处理顺序是怎样的,以及它们如何相互影响。可能的顺序有两种:先做LSR,再做向量化;或者反过来。不同的顺序可能会影响优化的效果。 首先考虑先进行LSR的情况。LSR将复杂的计算转换为更简单的形式,可能会让循环结构更简单,变量更易于分析,从而让向量化更容易进行。例如,如果原来的循环索引计算有复杂的表达式,LSR优化后可能变为线性增加的指针,这样向量化pass更容易识别出可以向量化的模式,比如连续的存储访问,从而生成SIMD指令。这种情况下,LSR为后续的向量化创造了更好的条件,可能会提高向量化的可能性或效率。 反之,如果先进行向量化,那么可能在向量化之后再进行LSR。但向量化后的循环结构可能更复杂,比如被转换成了多个向量化的循环,或者引入了新的变量和计算。这时LSR可能难以应用,或者优化的空间变小。因为向量化可能会改变循环的结构,使得原本可以优化的计算可能已经被向量化处理,或者结构变得不适合LSR。这种情况下,可能LSR的效果会减弱,或者无法应用。 另外,LLVM的pass管理器中有不同的优化阶段,不同的pass是按照一定的顺序排列的。根据LLVM的文档或源码,可能需要确认这两个pass的具体位置。一般来说,优化pass的顺序安排是有讲究的,先进行某些优化为后续的pass铺路。例如,循环优化通常会先进行一些简化,比如循环展开、归纳变量简化,然后进行强度削减,再之后进行向量化,因为向量化可能需要循环结构较为规整,而之前的优化可以帮助实现这一点。 不过,也有可能存在循环向量化之后再进行其他优化的情况,比如后期循环优化。但LSR通常在循环优化早期阶段进行,因为它的目的是简化循环中的计算,这样后续的优化可以更容易进行。 另外,LSR可能会影响循环的索引变量,改变内存访问模式,这可能会影响向量化的效果。比如,如果LSR将索引计算转换为更线性的形式,向量化pass可以更容易识别出连续的内存访问,从而更高效地进行向量化。而如果向量化pass先执行,可能无法利用LSR优化后的结构,导致向量化效果不佳或无法进行。 总结可能的顺序是LSR在循环向量化之前执行,这样LSR的优化为向量化创造条件,提高向量化的可能性或效率。而如果顺序相反,可能LSR的优化机会减少,或者无法有效应用,从而影响整体优化效果。 不过,我需要验证这一点。可以查阅LLVM的pass顺序,看看在标准的优化流程中这两个pass的位置。例如,LLVM的优化通常分为多个阶段,比如-O2或-O3中的pass顺序。可能循环优化在中间阶段,而向量化可能是在较后的阶段。比如,LSR可能在循环优化阶段较早执行,而向量化在之后的阶段进行。 例如,LLVM中的Loop Strength Reduction属于循环优化的一部分,通常在循环规范化(Loop Canonicalization)之后,而在向量化之前。而循环向量化pass可能是在较后的阶段,尤其是在进行循环展开或其他变换之后,再进行向量化处理。因此,LSR先执行,向量化在后,这样的顺序使得LSR的优化为向量化做准备。 此外,LSR可能会生成更利于向量化的代码模式,比如将复杂的索引计算转化为归纳变量的递增,这样向量化pass更容易处理连续的内存访问。而如果向量化之后再进行LSR,可能因为循环结构已经被向量化改变,导致LSR无法有效应用。 不过,也有可能存在相互促进的情况。例如,LSR优化后的代码可能更简洁,向量化之后可能还会有其他的优化pass,比如循环展开或进一步的强度削减。但通常情况下,LSR会在向量化之前完成其主要优化。 另外,考虑到向量化可能会对循环进行较大改动,比如将循环拆分为多个部分,或者引入新的控制流,这时候LSR可能难以在向量化之后进行有效的优化。因此,合理的顺序应该是先LSR,再向量化,这样两者的优化效果都能得到较好的发挥。 总结起来,LLVM中的循环强度削减pass通常会在循环向量化pass之前执行。这样的顺序使得LSR能够简化循环中的计算,优化循环结构,从而为后续的向量化创造更好的条件,提高向量化的可能性或效率。而如果顺序颠倒,可能会导致LSR的优化机会减少,进而影响整体性能优化的效果。</think>在LLVM的优化流程中,**循环强度削减(Loop Strength Reduction, LSR)** 和 **循环向量化(Loop Vectorization)** 的顺序和相互影响如下: --- ### **1. 优化顺序** **通常顺序是:LSR 在前,循环向量化在后**。 这一顺序在LLVM的默认优化管道(如 `-O3`)中被采用,主要原因如下: - **LSR的作用**: 将循环中的高开销操作(如乘法、复杂地址计算)转换为低开销操作(如加法、指针递增)。例如,将数组索引的乘法计算优化为线性递增的指针。 这使得循环结构更简单、内存访问模式更连续,**为后续向量化提供更清晰的模式**。 - **向量化的依赖条件**: 循环向量化需要循环体满足特定条件(如连续内存访问、无循环依赖),而LSR通过简化计算和规范化循环结构,**提高了向量化分析的成功率**。 --- ### **2. 相互影响** #### **(1) LSR 对向量化的促进作用** - **内存访问模式规范化**: LSR优化后,地址计算通常变为线性递增形式,向量化更容易检测到连续内存访问,从而生成高效的SIMD指令(如 `load/store` 向量化)。 - **归纳变量简化**: LSR会消除复杂的循环索引计算,减少向量化过程中对循环变量的依赖分析难度。 #### **(2) 向量化对LSR的影响** - **向量化可能削弱LSR的优化机会**: 如果向量化先于LSR执行,循环可能被重写为多层的(如标量余量循环+向量化主体循环),导致LSR难以直接优化原循环结构。 - **向量化后的LSR优化空间较小**: 向量化后的循环可能已通过SIMD指令合并操作,LSR的强度削减作用可能不再显著(例如,乘法已被向量化指令隐式优化)。 --- ### **3. LLVM中的具体实现** -vectorize` 前的 `Loop Pass Manager`),通常在循环规范化(如 `-loop-rotate`)和归纳变量简化之后。 - **向量化阶段**: 在 `LSR` 之后执行,属于较晚的循环优化(如 `-loop-vectorize`)。向量化后可能进一步执行其他优化(如循环展开、SLP向量化)。 --- ### **4. 示例** 假设原始循环: ```cpp for (int i = 0; i < N; i++) { A[i * 4] = ...; } ``` 1. **LSR优化后**: 将 `i * 4` 替换为递增指针 `ptr += 4`,消除乘法操作。 ```cpp int* ptr = A; for (int i = 0; i < N; i++, ptr += 4) { *ptr = ...; } ``` 2. **向量化**: 检测到连续内存访问(步长4),可能生成向量化代码(如 `AVX2` 一次处理8个元素)。 --- ### **5. 特殊情况** - **反向顺序的可能性**: 若循环在向量化后仍存在高开销操作(如非连续访问的余量循环),LSR可能再次被触发,但优化效果通常有限。 - **目标架构的影响**: 某些架构(如GPU)可能优先向量化,但LLVM的通用优化管道通常遵循LSR→向量化的顺序。 --- ### **总结** - **顺序**:LSR在前,向量化在后。 - **影响**:LSR为向量化铺路,提升向量化成功率;向量化后LSR的优化空间减少。 - **实践意义**:在手动编写高性能代码时,可参考此顺序设计循环结构(如避免复杂索引计算以辅助向量化)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值