大模型时代:主流训练、微调、推理与部署框架深度解析及对比

在大模型时代,选择适合的框架对于模型的训练、微调、推理和部署至关重要。本文将介绍几种常用的框架,并通过代码示例和表格对比,帮助读者了解这些框架的特点和使用场景。

一、训练框架
  1. PyTorch

PyTorch是一个动态图优先的深度学习框架,以灵活性和研究友好性著称。它支持张量计算、自动求导和分布式训练,且与Python深度集成,调试便捷。PyTorch支持GPU加速和混合精度训练,但在生产部署时需依赖TorchScript/ONNX。

代码示例:

import torch
model = torch.nn.Linear(10, 2)
output 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

anneCoder

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值