python可视化---xlim()函数

本文介绍了如何使用Matplotlib库中的xlim和ylim函数来设置图表的x轴和y轴数值显示范围,通过实例展示了如何创建散点图并限制坐标轴的显示范围。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

函数功能:设置x轴的数值显示范围。

调用签名:plt.xlim(xmin, xmax)

xmin:x轴上的最小值

xmax:x轴上的最大值

平移性:上面的函数功能,调用签名和参数说明同样可以平移到函数ylim()上。

代码实现:

import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0.05, 10, 1000)
y = np.random.rand(1000)

plt.scatter(x, y, label="scatter figure")

plt.legend()

plt.xlim(0.05, 10)
plt.ylim(0, 1)

plt.show()

 

转载于:https://www.cnblogs.com/czz0508/p/10451236.html

### Python 数据可视化 `xlim` 参数的作用与使用方法 #### `xlim` 参数概述 在 Matplotlib 中,`xlim` 是一个非常重要的函数,用于设置当前坐标轴的 x 轴范围。通过调整这个参数,可以控制图表中显示的数据区间,从而更好地聚焦于感兴趣的区域[^2]。 #### 函数签名及基本用法 ```python plt.xlim(left=None, right=None) ``` - 当仅提供两个位置参数时,它们分别对应左边界和右边界。 - 如果只给定一个非关键字参数,则该值会被视为新的上下限,并替换现有的最小最大值对。 - 关键字参数 `left` 和 `right` 可以独立设定左侧(最小)和右侧(最大)界限。 #### 实际应用示例 下面的例子展示了如何利用 `xlim` 来限定正弦波形图的有效显示区段: ```python import matplotlib.pyplot as plt import numpy as np # 定义 x 的范围 x = np.linspace(-2 * np.pi, 4 * np.pi, 500) # 计算 sin 的值 y_sin = np.sin(x) # 创建图形并绘制曲线 fig, ax = plt.subplots() ax.plot(x, y_sin, label='sin(x)', color='green') # 设置 x 轴限制 ax.set_xlim([-np.pi, np.pi]) # 添加其他元素 ax.set_title('Sine Wave with Limited X Range') ax.set_xlabel('Angle [radians]') ax.set_ylabel('Amplitude') ax.legend() # 显示网格和图形 ax.grid(True) plt.show() ``` 在这个例子中,即使原始数据覆盖了更宽泛的角度范围 (-2π 到 4π),但由于设置了 `set_xlim([-np.pi, np.pi])` ,最终呈现出来的图像只会展示从 -π 至 π 这一段内的波动情况[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值