UVA1149(装箱)

基本贪心思想,因为只能装两个,所以肯定优先装最重的,再装最轻的。

输出格式有点坑。

 1 #include <bits/stdc++.h>
 2 
 3 using namespace std;
 4 
 5 int main()
 6 {
 7     int t,n,i,m;
 8     int a[100860];
 9     cin >> t;
10     while(t--)
11     {
12         cin >> n >> m;
13         for(i=0; i<n; i++)
14             cin >> a[i];
15         sort(a,a+n);
16         int left = 0,right = n-1,sum = 0;
17         while(left<=right)
18         {
19             if(a[left]+a[right]<=m)
20             {
21                 sum++;
22                 left++;
23                 right--;
24             }
25             else
26             {
27                 sum++;
28                 right--;
29             }
30         }
31         cout << sum << endl;
32         if(t)cout << endl;//这个地方没有if(t)就是PR...
33     }
34     return 0;
35 }

 

转载于:https://www.cnblogs.com/HsiaoYeekwan/p/6370225.html

内容概要:本文提出了一种融合多尺度Wavelet模型的跨文化英语交际智能模型系统(FL-DP-Wavelet),旨在通过多模态数据融合、多尺度特征提取与跨文化适应性建模,提升智能系统的文化敏感性和语境理解能力。该模型通过结合小波变换与深度学习优化语言信号的时频特征提取,基于跨文化敏感性发展模型(DMIS)构建文化适应性评估模块,并设计多模态数据融合框架,增强跨文化场景下的语义解析鲁棒性。实验结果显示,系统在跨文化语境下的语义理解准确率提升12.7%,文化适应性评分优于基线模型15.3%。 适合人群:从事跨文化交流、国际商务、外语教育的研究人员和技术开发者,特别是对智能系统在跨文化场景中的应用感兴趣的学者和工程师。 使用场景及目标:①跨文化商务谈判、教育合作和公共外交等场景中,需要提升智能系统的文化敏感性和语境理解能力;②帮助系统实现实时文化适应,减少因文化差异引起的语义误判和非语言行为冲突;③通过多模态数据融合,增强智能系统在复杂跨文化环境中的语义解析能力。 其他说明:该研究不仅提出了新的理论框架和技术路径,还在实际应用中验证了其有效性和优越性。未来将聚焦于小波-Transformer耦合、联邦学习隐私保护和在线学习算法,进一步推动系统向自主文化融合演进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值