使用LangChain创建自定义例子选择器

在处理自然语言处理任务时,例如文本翻译或文本生成,我们可能需要一个机制来选择哪些例子应该被包含在提示中。LangChain提供了一种称为例子选择器(Example Selector)的类来帮助我们完成这项任务。在本文中,我们将通过创建一个自定义例子选择器,详细探讨如何实现这一功能。

技术背景介绍

LangChain是一个强大的库,旨在简化处理自然语言任务中的例子管理。处理大量例子时,有必要根据某些策略选择最合适的例子以确保提示的有效性。例子选择器的基类BaseExampleSelector定义了一个接口,以供各种具体实现选择例子。

核心原理解析

BaseExampleSelector类需要实现两个抽象方法:

  • select_examples: 根据输入变量选择例子并返回一个列表。
  • add_example: 向例子存储中添加新的例子。

不同的实现可以根据自己的策略选择合适的例子,例如基于文本长度、相似度等。

代码实现演示(重点)

我们将创建一个自定义的例子选择器CustomExampleSelector,选择那些与输入文本长度最接近的例子。

from langchain_core.example_selectors.base import BaseExampleSelector

class CustomExampleSelector(BaseExampleSelector):
    def __init__(self, examples):
        self.examples = examples

    def add_example(self, example):
        self.examples.append(example)

    def select_examples(self, input_variables):
        # 假设输入变量中包含'input'键
        new_word = input_variables["input"]
        new_word_length = len(new_word)

        # 初始化用于存储最佳匹配及其长度差异的变量
        best_match = None
        smallest_diff = float("inf")

        # 迭代所有例子以寻找最佳匹配
        for example in self.examples:
            current_diff = abs(len(example["input"]) - new_word_length)
            if current_diff < smallest_diff:
                smallest_diff = current_diff
                best_match = example

        return [best_match]

# 示例初始化和调用
examples = [
    {"input": "hi", "output": "ciao"},
    {"input": "bye", "output": "arrivederci"},
    {"input": "soccer", "output": "calcio"},
]

example_selector = CustomExampleSelector(examples)

# 选择与输入接近长度的例子
selected_example = example_selector.select_examples({"input": "okay"})
print(selected_example)  # 输出: [{'input': 'bye', 'output': 'arrivederci'}]

# 添加新的例子
example_selector.add_example({"input": "hand", "output": "mano"})

selected_example = example_selector.select_examples({"input": "okay"})
print(selected_example)  # 输出: [{'input': 'hand', 'output': 'mano'}]

应用场景分析

这个自定义选择器适用于需要根据某个特定条件(如输入的长度)选择例子的场景。例如,在自然语言翻译应用中,可以选择与输入长度最接近的翻译例子,以提高翻译的准确性。

实践建议

  • 根据实际需求定制选择器逻辑,LangChain支持多种选择器类型,包括相似性和长度等。
  • 优化例子选择算法以提高性能,特别是当例子列表很大时。

如果遇到问题欢迎在评论区交流。

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值