在处理自然语言处理任务时,例如文本翻译或文本生成,我们可能需要一个机制来选择哪些例子应该被包含在提示中。LangChain提供了一种称为例子选择器(Example Selector)的类来帮助我们完成这项任务。在本文中,我们将通过创建一个自定义例子选择器,详细探讨如何实现这一功能。
技术背景介绍
LangChain是一个强大的库,旨在简化处理自然语言任务中的例子管理。处理大量例子时,有必要根据某些策略选择最合适的例子以确保提示的有效性。例子选择器的基类BaseExampleSelector
定义了一个接口,以供各种具体实现选择例子。
核心原理解析
BaseExampleSelector
类需要实现两个抽象方法:
select_examples
: 根据输入变量选择例子并返回一个列表。add_example
: 向例子存储中添加新的例子。
不同的实现可以根据自己的策略选择合适的例子,例如基于文本长度、相似度等。
代码实现演示(重点)
我们将创建一个自定义的例子选择器CustomExampleSelector
,选择那些与输入文本长度最接近的例子。
from langchain_core.example_selectors.base import BaseExampleSelector
class CustomExampleSelector(BaseExampleSelector):
def __init__(self, examples):
self.examples = examples
def add_example(self, example):
self.examples.append(example)
def select_examples(self, input_variables):
# 假设输入变量中包含'input'键
new_word = input_variables["input"]
new_word_length = len(new_word)
# 初始化用于存储最佳匹配及其长度差异的变量
best_match = None
smallest_diff = float("inf")
# 迭代所有例子以寻找最佳匹配
for example in self.examples:
current_diff = abs(len(example["input"]) - new_word_length)
if current_diff < smallest_diff:
smallest_diff = current_diff
best_match = example
return [best_match]
# 示例初始化和调用
examples = [
{"input": "hi", "output": "ciao"},
{"input": "bye", "output": "arrivederci"},
{"input": "soccer", "output": "calcio"},
]
example_selector = CustomExampleSelector(examples)
# 选择与输入接近长度的例子
selected_example = example_selector.select_examples({"input": "okay"})
print(selected_example) # 输出: [{'input': 'bye', 'output': 'arrivederci'}]
# 添加新的例子
example_selector.add_example({"input": "hand", "output": "mano"})
selected_example = example_selector.select_examples({"input": "okay"})
print(selected_example) # 输出: [{'input': 'hand', 'output': 'mano'}]
应用场景分析
这个自定义选择器适用于需要根据某个特定条件(如输入的长度)选择例子的场景。例如,在自然语言翻译应用中,可以选择与输入长度最接近的翻译例子,以提高翻译的准确性。
实践建议
- 根据实际需求定制选择器逻辑,LangChain支持多种选择器类型,包括相似性和长度等。
- 优化例子选择算法以提高性能,特别是当例子列表很大时。
如果遇到问题欢迎在评论区交流。
—END—