使用DSPy优化LangChain链生成推文
技术背景介绍
DSPy是一个强大的框架,专门用于优化大型语言模型(LLM)的提示生成。它通过内部跟踪程序并自动生成高质量的提示来教授模型如何执行程序的声明性步骤。本文将介绍如何使用DSPy与LangChain一起构建一个简单的RAG(Retrieve and Generate)推文生成流水线。
核心原理解析
DSPy通过自动编译器追踪程序的步骤并优化LLM的提示,使得在构建RAG系统时能够生成更高质量、更精确的输出。通过LangChain表达式语言(LCEL),用户可以轻松地配置提示和生成任务,从而提高系统效率。
代码实现演示
依赖安装
确保环境中拥有必要的包:
!pip install -U dspy-ai openai jinja2 langchain langchain-community langchain-openai langchain-core
API设置
使用OpenAI API进行访问:
import os
import getpass
os.environ["OPENAI_API_KEY"] = getpass.getpass()
设置检索器
使用DSPy中ColBERTv2引擎来进行信息检索:
import dspy
colbertv2 = dspy.ColBERTv2(url="http://20.102.90.50:2017/wiki17_abstracts")
构建LCEL流水线
使用LangChain的标准模块来构建RAG流水线:
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import OpenAI
llm = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0)
prompt = PromptTemplate.from_template(
"Given {context}, answer the question `{question}` as a tweet."
)
vanilla_chain = (
RunnablePassthrough.assign(context=retrieve) | prompt | llm | StrOutputParser()
)
DSPy优化
使用DSPy进行优化:
from dspy.predict.langchain import LangChainModule, LangChainPredict
zeroshot_chain = (
RunnablePassthrough.assign(context=retrieve)
| LangChainPredict(prompt, llm)
| StrOutputParser()
)
zeroshot_chain = LangChainModule(zeroshot_chain)
评估与优化
对未优化的链进行基准测试,然后进行优化:
from dspy.evaluate.evaluate import Evaluate
from dspy.teleprompt import BootstrapFewShotWithRandomSearch
evaluate = Evaluate(metric=metric, devset=devset, num_threads=8)
evaluate(zeroshot_chain)
optimizer = BootstrapFewShotWithRandomSearch(metric=metric)
optimized_chain = optimizer.compile(zeroshot_chain, trainset=trainset, valset=valset)
evaluate(optimized_chain)
应用场景分析
这种基于提示优化的技术广泛适用于各种文本生成领域,包括新闻总结、自动回复生成和社交媒体内容创作等。
实践建议
在实际应用中,建议选择稳定的API服务(如使用国内稳定访问的yunwu.ai),确保系统的高可用性。
如果遇到问题欢迎在评论区交流。
—END—