在今天的文章中,我们将深入了解如何使用ArceeRetriever类来获取与Arcee的领域自适应语言模型(DALMs)相关的文档。本文包含了详细的代码示例,帮助您在实际项目中快速应用此技术。
技术背景介绍
Arcee致力于开发小型、专用、安全且可扩展的语言模型(SLMs),这些模型在特定领域表现卓越。为了有效地获取相关领域文档,Arcee提供了ArceeRetriever类,支持灵活、精确的文档检索。
核心原理解析
ArceeRetriever的核心功能是根据用户输入的查询条件高效地从已上传的上下文中检索相关文档。这一过程依赖于领域自适应语言模型(DALMs),如DALM-PubMed,通过定制化配置实现高效检索。
代码实现演示
在开始之前,请确保您的环境变量设置了ARCEE_API_KEY。可以在代码中直接传递此API密钥作为命名参数,以确保检索请求的认证。
以下是ArceeRetriever的基本设置:
from langchain_community.retrievers import ArceeRetriever
# 初始化ArceeRetriever
retriever = ArceeRetriever(
model="DALM-PubMed",
# 如果API密钥未在环境中设置,可以直接在此处传递
# arcee_api_key="ARCEE-API-KEY"
)
进一步配置
ArceeRetriever支持进一步配置,包括arcee_api_url、arcee_app_url及model_kwargs等参数。这些设置用于自定义API及应用的连接,model_kwargs用于在初始化对象时为后续检索设定默认的过滤器和大小。
retriever = ArceeRetriever(
model="DALM-PubMed",
arcee_api_url="https://custom-api.arcee.ai", # 默认是 https://api.arcee.ai
arcee_app_url="https://custom-app.arcee.ai", # 默认是 https://app.arcee.ai
model_kwargs={
"size": 5,
"filters": [
{
"field_name": "document",
"filter_type": "fuzzy_search",
"value": "Einstein",
}
],
},
)
检索文档
通过提供查询,可以从已上传的上下文中检索相关文档。示例如下:
query = "Can AI-driven music therapy contribute to the rehabilitation of patients with disorders of consciousness?"
documents = retriever.invoke(query)
使用过滤器和大小参数
您也可以应用过滤器来精准调整结果,并设置返回文档的数量:
# 定义过滤器
filters = [
{"field_name": "document", "filter_type": "fuzzy_search", "value": "Music"},
{"field_name": "year", "filter_type": "strict_search", "value": "1905"},
]
# 检索文档并应用过滤器和大小参数
documents = retriever.invoke(query, size=5, filters=filters)
应用场景分析
ArceeRetriever特别适用于需要高效获取特定领域文档的场景,如医学文献检索、法律文档分析、以及科技文档归档等领域的应用。
实践建议
- 密钥管理:妥善管理您的API密钥,确保其安全性。
- 自定义配置:根据项目需求自定义API和模型参数,以获得最佳性能。
- 持续优化参数:通过调整过滤器和检索大小参数,优化文档检索效率和精度。
如果遇到问题欢迎在评论区交流。
—END—