在现代人工智能技术应用中,记忆和检索机制扮演着至关重要的角色。通过增加上下文信息使得语言模型在对话过程中保持长时记忆是一项令人兴奋的技术突破。今天我们来讨论如何在LangChain中使用Remembrall生态系统,实现长时记忆和检索增强生成。
技术背景介绍
Remembrall是一个轻量级的代理层,能够在OpenAI调用的基础上增强语言模型的长时记忆功能、检索增强生成(Retrieval Augmented Generation)以及全程可观测能力。只需几行代码,您就可以将相关事实动态地添加到对话上下文中,极大地提升对话的智能性和相关性。
核心原理解析
Remembrall通过拦截OpenAI API调用,在运行时根据收集的事实增强聊天调用的上下文。这样,模型能够记住用户提供的长时信息并在后续对话中使用。这是一种通过动态调整模型输入来优化AI功能的创新方式。
代码实现演示
启用长时记忆
为了使用Remembrall增强长时记忆功能,您需要设置openai_api_base
和Remembrall API密钥,并指定一个UID以维持记忆。下面是示例代码:
from langchain_openai import ChatOpenAI
# 使用Remembrall平台增强长时记忆功能
chat_model = ChatOpenAI(openai_api_base="https://remembrall.dev/api/openai/v1",
model_kwargs={
"headers": {
"x-gp-api-key": "remembrall-api-key-here",
"x-gp-remember": "user@email.com", # 用户唯一标识符用于记忆
}
})
chat_model.predict("My favorite color is blue.")
import time; time.sleep(5) # 等待系统自动保存事实
print(chat_model.predict("What is my favorite color?"))
启用检索增强生成
检索增强生成是通过创建一个文档上下文并将其与Remembrall平台连接来实现的。下面是如何进行设置:
from langchain_openai import ChatOpenAI
# 使用Remembrall平台启用检索增强生成
chat_model = ChatOpenAI(openai_api_base="https://remembrall.dev/api/openai/v1",
model_kwargs={
"headers": {
"x-gp-api-key": "remembrall-api-key-here",
"x-gp-context": "document-context-id-goes-here", # 文档上下文ID
}
})
print(chat_model.predict("This is a question that can be answered with my document."))
应用场景分析
在实际开发中,Remembrall的长时记忆技术可以用于用户个性化服务、智能客服系统以及个人助理服务。检索增强生成则在复杂查询处理和知识管理系统中具有显著优势。
实践建议
- 保持API密钥安全,不与任何平台分享。
- 按需创建文档上下文,优化检索设计。
- 结合用户标识符与记忆功能,提供个性化服务。
如果遇到问题欢迎在评论区交流。—END—