clickhouse配置多块磁盘

本文介绍了如何在clickhouse集群中配置多块磁盘,以解决系统盘空间不足的问题。通过修改config.xml文件设定磁盘名字和路径,并创建存储策略。重启服务后,ClickHouse将能识别新磁盘。在使用中,可以通过指定存储策略决定数据存储位置,避免全部数据存于默认路径。此外,展示了如何查询数据的存储情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

最近让运维同学新搭了一个clickhouse集群,每台服务器都配置了多块磁盘,但是使用的时候还是按照以前的方式是使用的,导致系统盘空间不够。特此记录一下配置和使用方法。

集群配置

执行lsblk命令,可以看到本地机器的磁盘信息:
在这里插入图片描述
主要需要修改的地方是config.xml文件,在配置文件中插入以下格式的语句:

<!-- 存储路径 -->
<storage_configuration>
	<disks>
		<disk_name_0>
			<path>/data1/clickhouse/</path>
		</disk_name_0>
		<disk_name_1>
			<path>/data2/clickhouse/
<think>好的,用户想了解ClickHouse的架构设计。首先,我需要回忆一下ClickHouse的核心架构特点。记得ClickHouse是列式存储数据库,这对于OLAP场景很关键。列式存储能提高查询效率,特别是聚合查询的时候,因为它只需要读取相关列的数据,而不是整行。这一点应该在架构部分重点强调。 接下来是分片和副本机制。ClickHouse支持分布式架构,数据可以分片存储在不同的节点上,同时每个分片可以有多个副本,保证高可用性和数据冗余。需要解释分片如何实现水平扩展,副本如何通过异步或同步方式复制数据。可能需要提到集群配置和ZooKeeper的作用,因为ZooKeeper用于协调分布式操作,比如元数据管理和副本同步。 然后是核心抽象,比如列、字段、块(Block)的概念。块是处理数据的基本单元,由多个列组成,每个列是连续的内存块,这样在处理数据时可以利用向量化执行,提高性能。向量化执行引擎和LLVM优化也是其高效查询的重要原因,这里需要说明它们如何工作。 数据存储结构方面,MergeTree引擎家族是ClickHouse的核心,比如MergeTree、ReplacingMergeTree等。这些引擎支持数据分区、索引(如主键索引、跳数索引),以及数据合并过程。分区键和主键的区别需要澄清,主键用于索引,而分区键用于数据存储的分区管理。 数据处理流程包括数据插入、查询、更新和删除。由于ClickHouse主要针对批量写入,插入过程会先写入内存再落盘,而更新和删除是通过ALTER操作实现,这在列式存储中比较少见,需要解释其实现机制,比如标记删除和异步合并。 高性能的原因部分,除了列式存储和向量化执行,还有数据压缩、并行分布式查询等。需要提到这些技术如何共同作用,使得ClickHouse在处理大数据分析时表现出色。 应用场景部分,应该列举典型的OLAP用例,如日志分析、用户行为分析、实时报表等,说明架构设计如何支持这些场景。 用户提供的引用资料中,引用[2]提到了架构简介和核心抽象,引用[3]可能有数据库引擎的详细解析,需要结合这些内容确保回答准确。同时要检查是否有其他细节遗漏,比如数据查询的执行过程,可能涉及查询优化器和分布式查询计划生成。 最后,生成相关问题时要围绕架构的各个方面,比如列式存储的优势、分片副本机制、MergeTree引擎、性能优化技术等,确保问题能帮助用户深入理解。</think>### ClickHouse 架构设计详解 ClickHouse 是一款面向 **联机分析处理(OLAP)** 的列式数据库管理系统,其架构设计以高性能、高吞吐量和分布式扩展能力为核心目标。以下从核心组件、数据存储、分布式架构和运作流程四方面解析其架构。 --- #### 一、核心架构组件 1. **列式存储引擎** ClickHouse 采用列式存储,数据按列组织并压缩存储,显著减少 I/O 消耗,提升聚合查询效率。例如,计算某列的平均值只需读取该列数据,而非整行[^2]。 2. **向量化执行引擎** 通过 SIMD 指令集和向量化处理,批量处理数据列(而非逐行处理),大幅提高 CPU 利用率。例如,对 $x_i + y_i$ 的运算可一次性完成整列的加法操作[^3]。 3. **分布式与分片机制** - **分片(Shard)**:数据水平切分到多个节点,支持横向扩展。 - **副本(Replica)**:每个分片可配置多个副本,通过 ZooKeeper 协调数据一致性,实现高可用[^1]。 - 查询时通过 **分布式表引擎**(如 `Distributed`)自动路由请求到对应分片。 --- #### 二、数据存储结构 1. **MergeTree 引擎家族** - **MergeTree**:核心引擎,支持按时间或自定义键分区(Partition),数据按主键有序存储,加速范围查询。 - **ReplicatedMergeTree**:在 MergeTree 基础上增加副本同步功能,依赖 ZooKeeper 管理元数据。 - **CollapsingMergeTree**:支持数据版本折叠,适用于增量更新场景。 2. **索引机制** - **主键索引**:稀疏索引,减少索引存储空间。 - **跳数索引**(如 `minmax`、`set`):基于数据块的统计信息,快速过滤无关数据块。 --- #### 三、数据处理流程 1. **数据写入** - 写入操作先写入内存缓冲区(MemTable),定期刷写到磁盘形成不可变的数据片段(Part)。 - 后台线程合并小片段为大片段(Merge),优化查询性能[^2]。 2. **数据查询** - 查询优化器生成执行计划,优先利用索引和分区裁剪。 - 分布式查询时,协调节点合并各分片结果并返回。 3. **数据更新与删除** ClickHouse 通过 `ALTER TABLE ... UPDATE/DELETE` 实现异步更新/删除,实际是标记数据并后台合并清理。 --- #### 四、高性能关键设计 1. **数据压缩** 列式存储天然适合压缩(如 LZ4、ZSTD),压缩比可达 5-10 倍,减少存储和网络传输开销。 2. **并行与分布式执行** 单机多核并行处理 + 跨节点分布式查询,充分利用集群资源。 3. **资源隔离** 支持配置资源组(Resource Groups),避免大查询影响关键任务。 --- #### 五、典型应用场景 1. **实时日志分析**:高速写入与聚合查询能力,适合 PB 级日志处理。 2. **用户行为分析**:漏斗分析、路径分析等复杂查询。 3. **时序数据处理**:物联网设备监控、指标存储[^1]。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值