Container With Most Water 双指针法

本文探讨了在给定一组垂直线的情况下,如何通过双指针算法找出能够构成最大容器盛水量的两线。该算法在数组首尾设置指针,并逐步向内移动,优化计算过程,避免无效操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.

Note: You may not slant the container and n is at least 2.

双指针

一种枚举算法的优化,在具有有序性质的问题上可以优化复杂度,此题题意是在数组中选取两条边和X轴一起组成矩形容器,最多能存储多少水,影响容量的因素有两个: 容器的底(左右两条线段长度之差)和高(左右两条线段长度最小值)。
双指针在数组首尾相向移动, 优化掉大部分的无效计算([3,1,3,3] 这个数组,左右指针分别在首尾,左边的指针向右移动,底和高都会减少,面积显然不会增大,这一步计算可以直接优化掉)

class Solution {
public:
    int maxArea(vector<int>& height) {
        int ans = 0, l = 0, r = height.size() - 1;
        if(!height.empty()) {
            ans = max(ans, (r - l) * min(height[l], height[r]));
            while(l < r){
                if(height[l] < height[r]){
                    while(l < r && height[l+1] < height[l]){
                        l++;
                    }
                    l++;
                }
                else {
                    while(l < r && height[r - 1] < height[r]){
                        r--;
                    }
                    r--;
                }
                ans = max(ans, (r - l) * min(height[l], height[r]));
            }
            
        }
        return ans;
    }
};

转载于:https://www.cnblogs.com/joeylee97/p/9165782.html

内容概要:本文档详细介绍了基于MATLAB实现的多头长短期记忆网络(MH-LSTM)结合Transformer编码器进行多变量时间序列预测的项目实例。项目旨在通过融合MH-LSTM对时序动态的细致学习和Transformer对全局依赖的捕捉,显著提升多变量时间序列预测的精度和稳定性。文档涵盖了从项目背景、目标意义、挑战与解决方案、模型架构及代码示例,到具体的应用领域、部署与应用、未来改进方向等方面的全面内容。项目不仅展示了技术实现细节,还提供了从数据预处理、模型构建与训练到性能评估的全流程指导。 适合人群:具备一定编程基础,特别是熟悉MATLAB和深度学习基础知识的研发人员、数据科学家以及从事时间序列预测研究的专业人士。 使用场景及目标:①深入理解MH-LSTM与Transformer结合的多变量时间序列预测模型原理;②掌握MATLAB环境下复杂神经网络的搭建、训练及优化技巧;③应用于金融风险管理、智能电网负荷预测、气象预报、交通流量预测、工业设备健康监测、医疗数据分析、供应链需求预测等多个实际场景,以提高预测精度和决策质量。 阅读建议:此资源不仅适用于希望深入了解多变量时间序列预测技术的读者,也适合希望通过MATLAB实现复杂深度学习模型的开发者。建议读者在学习过程中结合提供的代码示例进行实践操作,并关注模型训练中的关键步骤和超参数调优策略,以便更好地应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值