基于RAG搭建大模型知识库

介绍

LLM具有强大的语言理解和生成能力,当下存在一些局限性,失效受制、专业能力有限和定制成本高。有两种开发范式RAG(实时更新)和Finetune(个性化微调)。
RAG 检索增强生成

前排提示,文末有大模型AGI-CSDN独家资料包哦!
在这里插入图片描述
基于langchain搭建rag应用
在这里插入图片描述
构建向量数据库
在这里插入图片描述
搭建知识库助手
在这里插入图片描述
在这里插入图片描述
基于gradio的web部署

基础作业-复现知识库助手搭建过程

进入 conda 环境之后,使用以下命令从本地一个已有的 pytorch 2.0.1 的环境,然后使用以下命令激活环境

bash
/root/share/install_conda_env_internlm_base.sh InternLM
conda activate InternLM

在这里插入图片描述

在环境中安装运行 demo 所需要的依赖

python -m pip install --upgrade pip
pip install modelscope==1.9.5
pip install transformers==4.35.2
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1

在这里插入图片描述

模型下载

mkdir -p /root/data/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-chat-7b /root/data/model/Shanghai_AI_Laboratory/internlm-chat-7b

在这里插入图片描述
在已完成 InternLM 的部署基础上,还需要安装LangChain 依赖包

pip install langchain==0.0.292
pip install gradio==4.4.0
pip install chromadb==0.4.15
pip install sentence-transformers==2.2.2
pip install unstructured==0.10.30
pip install markdown==3.3.7
pip install -U huggingface_hub

在这里插入图片描述
通过huggingface下载开源词向量模型 Sentence Transformer
在这里插入图片描述
下载 NLTK 相关资源

cd /root
git clone https://gitee.com/yzy0612/nltk_data.git  --branch gh-pages
cd nltk_data
mv packages/*  ./
cd tokenizers
unzip punkt.zip
cd ../taggers
unzip averaged_perceptron_tagger.zip

在这里插入图片描述
下载本项目代码

cd /root/data
git clone https://github.com/InternLM/tutorial

在这里插入图片描述
数据收集

收集数据

cd /root/data
git clone https://gitee.com/open-compass/opencompass.git
git clone https://gitee.com/InternLM/lmdeploy.git
git clone https://gitee.com/InternLM/xtuner.git
git clone https://gitee.com/InternLM/InternLM-XComposer.git
git clone https://gitee.com/InternLM/lagent.git
git clone https://gitee.com/InternLM/InternLM.git

在这里插入图片描述
构建知识库
在这里插入图片描述
InternLM 接入 LangChain
在这里插入图片描述

构建检索问答链并运行
在这里插入图片描述
将服务器端口映射到本地端口
在这里插入图片描述
打开网页
在这里插入图片描述

进阶作业

我来制作一个讲故事的机器人
1、收集故事
在这里插入图片描述

2、构建知识向量库
在这里插入图片描述
3、运行web 测试下
在这里插入图片描述

6.2 系统的持续优化

通过数据反馈、模型微调和算法优化,AI大模型问答系统能够不断进化。这使得系统不仅能够适应新兴问题,还能处理日益复杂的用户需求,为用户提供更加智能的服务。

如何学习AI大模型 ?

最先掌握AI的人,将会比较晚掌握AI的人有竞争优势

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

倘若大家对大模型抱有兴趣,那么这套大模型学习资料肯定会对你大有助益。

针对0基础小白:

如果你是零基础小白,快速入门大模型是可行的。
大模型学习流程较短,学习内容全面,需要理论与实践结合
学习计划和方向能根据资料进行归纳总结

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

请添加图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

这里我们能提供零基础学习书籍和视频。作为最快捷也是最有效的方式之一,跟着老师的思路,由浅入深,从理论到实操,其实大模型并不难

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值