《深度学习原理与TensorFlow实践》学习笔记(三)

本文介绍了深度学习在图像识别领域的应用,从计算机视觉的基本概念到卷积神经网络(CNN)的工作原理,包括卷积、池化、ReLU等关键操作。接着探讨了经典模型如AlexNet、VGGNet、GoogLeNet及其改进版,以及ResNet,阐述了它们在深度、结构和参数优化方面的创新,展示了深度学习如何通过多层特征提取提高图像识别的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像识别的经典课题

计算机视觉
  • 核心目标:让计算机“看懂”图像内容
  • 问题挑战:
    • 图像包含的信息复杂,充满着简单(颜色、线条、形状等)和复杂(姿势、场景、物体分布等)的元素,难以使用单一知识体系来概括。
    • 图像对于计算机来说,只是独立的像素集合,计算机无法归纳像素之间的关联关系
图像识别课题

Markdown
Markdown

卷积神经网络原理

前深度学习时代
  • 传统机器学习方法
    • 图像预处理:调整大小、调整明暗度、图像降噪、图像增强等
    • 特征提取:手工或利用图像处理算子(如,SIFT、HoG、Sobel等)
    • 归纳识别:SVM、人工神经网络
  • 局限
    • 传统机器学习算法只能得出输入特征与输出标签之间的映射关系
    • 特征选取强烈依赖人类的先验经验和大量实践,可移植程度低
    • 大量特征无法由人类归纳总结
卷积操作(Convolution)
池化(Pooling)
  • 池化操作
    • 一般有最大池化(max pooling)和平均池化(average pooling)两种操作
    • 通常采用 2×2 的窗口大小,步长为2,处理完的图像长和宽都是
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值