- 博客(24)
- 收藏
- 关注
原创 Ubuntu 修改语言报错Failed to download repository information
系统崩溃,进不去了。删除,换kali了,https://blog.csdn.net/Bulldozer_GD/article/details/106198746。4.修改语言参考https://blog.csdn.net/plus1993/article/details/48102043。2.修改(我是直接增添以下内容在其原始源前面,没有删原始内容)文件并保存,这里会替换原文件。1.进入文件(ps:vim可能出现无法修改sources.list文件的问题)
2025-04-18 17:13:00
385
原创 P8:使用pytorch实现YOLOv5-C3模块
本周先用pytorch来实现YOLOv5-C3的模块,提前熟悉一下YOLO,虽然YOLO各路大神版本很多,但是V5很稳定,还是很有必要学习学习的。任务是天气分类。提问:是否可以调整C3和Conv块来提高准确率?
2025-03-07 17:28:28
352
原创 P7使用pytorch实现马铃薯病害识别
原因分析先检查了自己搭建的VGG16,发现与官方的略有不同,classifier的结构不同,在每个Relu激活函数后没有dropout层,但是官方的有。# 加载预训练模型,并对模型进行微调param.requires_grad = False#冻结模型参数,这样在训练时只训练最后一层的参数# 修改classifier的最后一层提精度尝试1:动态损失,最高精度90.7%
2025-02-28 17:23:56
523
原创 P6:使用pytorch实现人脸识别
更新学习率(使用自定义学习率时使用)scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)# 保存最佳模型到 best_modelbest_model = copy.deepcopy(model) #这里保存的是最佳模型的深拷贝,如果 model 已经在 GPU 上,那么 best_model 也会在 GPU 上# 获取当前的学习率# 保存最佳模型到文件中PATH = './best_model.pth' # 保存的参数文件名修正后的代码如下。
2025-02-21 20:09:49
1549
原创 P5:使用pytorch实现运动鞋识别
● 第一步:使用pathlib.Path()函数将字符串类型的文件夹路径转换为pathlib.Path对象。● 第二步:使用glob()方法获取data_dir路径下的所有文件路径,并以列表形式存储在data_paths中。● 第三步:通过split()函数对data_paths中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classeNames中● 第四步:打印classeNames列表,显示每个文件所属的类别名称。
2025-02-12 11:37:54
1985
2
原创 p4:使用pytorch实现猴痘病识别
本次实验除了以前的内容新增了2个功能:指定图片预测和保存并加载模型。除此之外,还可以调整结构使得测试集acc不小于0.88。
2025-01-24 21:23:08
481
原创 P2:使用pytorch实现CIFAR10彩色图片识别
今天的pytorch的基本用法有:1.torch.utils.data.DataLoader()加载数据2.构建简单的CNN网络对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。torch.nn.Conv2d()详解关键参数说明:● in_channels ( int ) – 输入图像中的通道数● out_channels ( int ) – 卷积产生的通道数。
2025-01-10 21:10:15
451
原创 T10猫狗识别之数据增强
相对于同专栏的前几篇文章,本文即包含了如何使用 tf.keras.preprocessing.image_dataset_from_directory 从文件系统中加载图像数据,并将其分为训练集、验证集和测试集,又包含了数据增强即其使用方式。
2024-12-20 14:15:04
891
原创 T9:猫狗识别2
在每次迭代中,train_loss 和 train_accuracy 都会被重新赋值为当前 batch 的损失和准确率。由于这些变量是 单个标量,而不是列表或数组,因此它们不会累积每个 batch 的值,而是每次都直接覆盖为最新的值当 epoch 结束时。
2024-12-13 12:02:05
783
原创 T7:使用tensorflow完成咖啡豆识别
这期的任务是:要求:拔高(可选):3. 验证集准确率达到100%4. 使用PPT画出VGG-16算法框架图(发论文需要这项技能)5.探索(难度有点大)6. 在不影响准确率的前提下轻量化模型○ 目前VGG16的Total params是134,276,9322.自建模型关于卷积的相关知识可以参考文章:https://mtyjkh.blog.csdn.net/article/details/114278995结构说明:● 13个卷积层(Convolutional Layer),
2024-11-22 14:03:17
643
原创 T6:使用tensorflow实现好莱坞明星识别
本次任务最高的准确率可以达到41.667%,未选择使用VGG-16网络框架(自己搭建or调用)来实验。
2024-11-15 18:31:12
791
原创 T5:使用tensorflow完成运动鞋品牌识别
选择合适的学习率是训练深度学习模型的关键步骤之一。初始学习率太大可能会导致训练不稳定,因此建议从一个较小的学习率开始,逐步调整到一个合适的值。大家自己动手尝试一下吧!(以下是我的参考代码)# 设置初始学习率decay_steps=10, # 敲黑板!!!这里是指 steps,不是指epochsdecay_rate=0.92, # lr经过一次衰减就会变成 decay_rate*lr# 将指数衰减学习率送入优化器。
2024-11-08 14:46:32
784
原创 T4:使用tensorflow实现猴痘病识别
本次任务就是对45-data目录下的2类图片进行二分类。关于数据集划分成训练和验证集是否会有相同的样本?在代码中,train_ds和val_ds是从同一个目录data_dir中创建的两个数据集,分别用于训练和验证。这两个数据集是通过函数来创建的,并且都指定了参数,这意味着整个数据集中有 20% 的数据将被用作验证集,剩下的 80% 将被用作训练集。关键点在于subset对于train_ds表示该数据集是从训练子集中抽取的。对于val_ds表示该数据集是从验证子集中抽取的。
2024-11-01 11:22:10
1889
原创 T3:使用tensorflow完成天气识别任务
Dropout 是一种常用的正则化技术,用于防止模型过拟合。通过在训练过程中随机丢弃一部分神经元,Dropout 可以提高模型的泛化能力。
2024-10-25 15:07:45
817
原创 T2:使用Tensorflow完成彩色图片分类任务
CIFAR-10是一个广泛使用的图像分类数据集,包含60,000个32x32彩色图像,分为10个类别,每类有6,000张图像。这些图像被分为50,000个训练图像和10,000个测试图像。本周任务是分类。
2024-10-17 14:23:25
921
原创 T1:使用 tensorflow实现mnist手写数字识别
形成一个对深度学习的初步认识,了解神经网络的一个过程。另外记录一下其他学到小知识。
2024-10-10 21:26:01
846
2
原创 【C语言】随机数/随机抽卡求和
题目暗含有不放回抽取的意思,所以要避免重复随机数,故而设置2个数组,一个存储待抽取的数,一个用于标志抽取情况。若只要求求抽取的5个数之和可以不用a[]数组也能实现。
2023-03-14 16:56:38
530
原创 【C语言】十进制转二进制0、1计数
开始拿到这道题就想到之前的递归实现逆序输出字符串,我也尝试用递归来写fun0和fun1函数,结果因为返回值的问题一直出错,最终还是回到用循环来实现短除法十转二的过程,在这过程中简单的计数就可以解决0,1个数的问题。
2023-03-13 16:35:37
430
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人