面试题链接:https://www.nowcoder.com/discuss/91413
3.java与c++的区别,知道多少答多少
JAVA中有异常机制,C++没有
C++有指针,java没有
C++创建对象之后,使用完调用delete方法将其销毁,Java通过垃圾回收机制
C++中声明常量的关键字是“const”;java中声明常量的关键字是“final”
Java单继承,C++多继承
C++不支持字符串,java通过类对象实现字符串
C++有goto,Java没有goto(作为保留字)
4.说几个自己常用的数据结构
数据结构:
栈:(stack)先进后出,后进先出;一个开口
队列:(queue)先进先出
二叉树:每个节点至多只有两颗子树
存储结构:
顺序存储结构:用一组地址连续的存储单元一次从上而下,从左到右存储完全二叉树上的结点元素
仅仅适用于完全二叉树
链式存储结构
遍历二叉树:先序遍历 DLR
中序遍历 LDR
后序遍历 LRD
实质是对一个非线性结构进行线性化的操作,使每个结点(出去第一个和最后一个)在这些线性序列中有且仅有一个直接前驱和直接后继。时间复杂度和空间复杂度均为O(n)。
当二叉链表作为存储结构时,只能找到结点的左右孩子信息,不能直接得到结点在任意序列中的前驱和后继信息,只有在遍历的动态过程中才能得到。
线索二叉树:LTag= 0 lchild域指示结点的左孩子
1 lchild 域指示结点的前驱
RTag=0 rchild域指示结点的右孩子
1 rchild 域指示结点的后驱
以这种结点结构构成的二叉链表作为二叉树的存储结构,叫线索链表,指向结点前驱和后继的指针叫线索。加上线索的二叉树叫线索二叉树。一般用在经常遍历和利用前驱和后继查找结构的情况。
最优二叉树(赫夫曼树):是一种带权路径长度最短的二叉树。利用赫夫曼编码进行压缩。
动态查找表
二叉排序树(二叉查找树):①空树 ②左子树不空,左结点值均小于根节点;右子树不空,右结点值均大于根节点;左右子树均为二叉排序树。
平衡二叉树(AVL树):①空树 ②左右子树均为平衡二叉树,左子树右子树深度之差(注意不是节点数之差)的绝对值不超过1。将二叉树上结点的左子树深度减去右子树深度的值称为平衡因子BF,那么平衡二叉树上的所有结点的平衡因子只可能是-1、0和1。只要二叉树上有一个结点的平衡因子的绝对值大于1,则该二叉树就是不平衡的。平衡二叉树很好的解决了二叉查找树退化成链表的问题,把插入,查找,删除的时间复杂度最好情况和最坏情况都维持在O(logN)。
B-树:一种平衡的多路查找树,在文件系统中很有用。查找过程和二叉排序树类似。
B+树:是应文件系统所需而出的一种B-树的变型树。在B+树上进行随机查找,插入,删除过程基本和B-树类似。只是在查找时,如果终端结点关键字不等于给定值,不终止,继续向下直到叶子结点。
堆(heap):堆是一棵完全二叉树。大顶堆:根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者,称为大顶堆(大根堆,最大堆);小顶堆正好相反。
红黑树:是一种自平衡二叉查找树,红黑树和AVL树类似,都是在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获得较高的查找性能。
在二叉查找树强制一般要求以外,对于任何有效的红黑树我们增加了如下的额外要求:
性质1. 节点是红色或黑色。
性质2. 根节点是黑色。
性质3 每个叶节点(NIL节点,空节点)是黑色的。
性质4 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)
性质5. 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。
插入和删除利用颜色属性来保证操作之后树还是平衡的。查找,插入和删除的时间复杂度都是:O(logN)。统计性能比平衡二叉树好。
Java集合中的TreeSet和TreeMap,C++ STL中的set、map,Linux虚拟内存的管理,都是通过红黑树去实现的。
5.hashMap源码与currenthashmap源码,1.7与1.8 的区别
(第二个应该是Concurren