在现代AI应用中,向量存储是一个关键组件。Chroma 是一个专注于开发者生产力和幸福感的AI原生开源向量数据库。本文将介绍如何使用 Chroma 向量存储,并提供详细的代码实现思路。
AI技术的实际应用场景
Chroma 向量存储可以用于多种AI应用场景,包括但不限于自然语言处理、图像识别和推荐系统。在这些场景中,向量存储用于高效地存储和检索嵌入向量,以支持快速的相似性搜索和数据管理。
技术选型考虑因素
选择向量存储时,需要考虑以下因素:
- 性能:Chroma 提供高效的向量检索能力,适合需要快速响应的应用。
- 易用性:Chroma 的API设计简洁,易于集成到现有系统中。
- 扩展性:支持大规模数据存储和检索,适合不断增长的数据需求。
代码实现思路
环境设置
首先,安装 langchain-chroma
集成包:
pip install -qU "langchain-chroma>=0.1.2"
初始化
可以通过以下方式初始化 Chroma 向量存储:
from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
vector_store = Chroma(
collection_name="example_collection",
embedding_function=embeddings,
persist_directory="./chroma_langchain_db"
)