Chroma 向量存储的入门指南

在现代AI应用中,向量存储是一个关键组件。Chroma 是一个专注于开发者生产力和幸福感的AI原生开源向量数据库。本文将介绍如何使用 Chroma 向量存储,并提供详细的代码实现思路。

AI技术的实际应用场景

Chroma 向量存储可以用于多种AI应用场景,包括但不限于自然语言处理、图像识别和推荐系统。在这些场景中,向量存储用于高效地存储和检索嵌入向量,以支持快速的相似性搜索和数据管理。

技术选型考虑因素

选择向量存储时,需要考虑以下因素:

  1. 性能:Chroma 提供高效的向量检索能力,适合需要快速响应的应用。
  2. 易用性:Chroma 的API设计简洁,易于集成到现有系统中。
  3. 扩展性:支持大规模数据存储和检索,适合不断增长的数据需求。

代码实现思路

环境设置

首先,安装 langchain-chroma 集成包:

pip install -qU "langchain-chroma>=0.1.2"
初始化

可以通过以下方式初始化 Chroma 向量存储:

from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(model="text-embedding-3-large")

vector_store = Chroma(
    collection_name="example_collection",
    embedding_function=embeddings,
    persist_directory="./chroma_langchain_db"
)
### Chroma 向量数据库介绍 Chroma 是一个专门用于管理和操作嵌入数据的向量数据库。这种类型的数据库特别适合于那些依赖大量高维数据表示的应用程序,比如自然语言处理中的语义相似度计算、图像识别等领域。通过高效地存储和索引这些复杂的特征向量Chroma 可以为机器学习模型提供快速准确的数据访问能力[^2]。 ### 安装 Chroma 和创建环境 为了开始使用 Chroma 数据库,在本地计算机上设置一个新的 Python 虚拟环境是非常推荐的做法。这可以通过 Conda 来完成: ```bash conda create --name chromadb python=3.11 ``` 激活新创建的虚拟环境之后,可以继续按照官方文档或其他资源来安装 Chroma 库及其依赖项[^1]。 ### 使用 Chroma 进行数据存储与检索 一旦完成了必要的软件包安装工作,就可以着手准备实际应用了。下面是一些基本的操作指南: #### 初始化客户端连接 首先需要导入 `chromadb` 并初始化客户端实例以便后续调用其 API 函数: ```python import chromadb client = chromadb.Client() ``` #### 构建集合对象 接着定义一个或多个集合 (Collection),每个集合代表一组具有相同结构特点的记录条目。对于每一条记录而言,则由 ID 字符串以及对应的数值型特征数组构成: ```python collection_name = "example_collection" dimensionality = 768 # 假设我们正在使用的预训练模型输出的是 768 维度的向量 try: collection = client.get_or_create_collection( name=collection_name, metadata={"hnsw:space": "cosine", "dim": dimensionality} ) except Exception as e: print(f"Failed to get or create collection {e}") ``` #### 插入数据到集合中 有了上述准备工作以后,现在可以把新的数据点加入指定的集合里去。这里假设已经有了预先计算好的一批向量列表 ready_to_add_vectors[]: ```python ready_to_add_ids = ["id_{}".format(i) for i in range(len(ready_to_add_vectors))] collection.add(ids=ready_to_add_ids, vectors=ready_to_add_vectors) ``` #### 查询最接近给定查询向量的结果集 最后一步就是执行基于内容的近似最近邻搜索任务啦!只需要传递目标查询向量 query_vector 即可获得 top_k 个匹配项: ```python results = collection.query(query_embeddings=[query_vector], n_results=top_k) for result_id, distance in zip(results['ids'][0], results['distances'][0]): print(f"ID:{result_id}, Distance from Query Vector:{distance}") ``` 以上便是有关 Chroma 向量数据库的一些基础概念和技术细节说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值