(13-3-03)DDPG算法综合实战:基于强化学习的股票交易策略

本文介绍了如何使用Quantopian的pyfolio库在金融市场中对强化学习驱动的交易策略进行性能回测,包括数据预处理、选择交易日期、账户价值计算、夏普比率评估以及与基准指数的比较,展示了自动化回测工具在减少人为误差和策略评估中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

11.3.7  性能回测

在金融市场,回测在评估交易策略性能方面起着关键作用。在强化学习应用中,自动化的回测工具更受欢迎,因为它减少了人为错误。在本项目中,使用Quantopian的pyfolio包来回测我们的交易策略。pyfolio易于使用,包括各种独立的图表,提供了交易策略性能的全面图像。

(1)从经过预处理的数据 processed 中选择在测试期间的唯一交易日期,并将它们存储在名为 unique_trade_date 的变量中。最终,unique_trade_date 将包含测试期间的唯一交易日期。

unique_trade_date = processed[(processed.date > TEST_START_DATE)&(processed.date <= TEST_END_DATE)].date.unique()

对上述代码的具体说明如下:

  1. processed[(processed.date > T
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值