10.3 利用模型进行规划
利用模型进行规划是一种在强化学习中常用的策略,其中智能体首先通过与环境的交互或给定的数据学习一个环境模型,该模型能够预测在特定状态下采取某个动作后的结果,包括下一个状态和可能获得的奖励。随后,智能体使用这个学习到的环境模型来模拟未来可能发生的事件,进行虚拟的“想象”或“回放”,从而在不实际与环境交互的情况下评估不同策略的效果。这种方法允许智能体在模型中测试和优化其决策过程,以期在真实环境中执行时能够获得更好的性能,同时减少试错的成本和风险。通过模型规划,智能体可以更高效地探索策略空间,加速学习过程,并提高策略的适应性和鲁棒性。
10.3.1 规划的基本概念:开环规划与闭环规划
在基于模型的强化学习中,规划是利用学习到的环境模型来预测未来的状态和奖励,并据此优化决策过程。规划可以分为两种基本类型:开环规划和闭环规划(再规划)。
1. 开环规划(Open-Loop Planning)
开环规划是一种在给定初始状态下,基于当前策略和环境模型,预先计算出一系列动作并执行的规划方法。在开环规划中,一旦规划好的动作序列被确定,智能体就会严格按照这个序列执行动作,不考虑执行过程中环境的任何变化或不确定性。
(1)特点
- 确定性:规划过程中不考虑环境的随机性和不确定性,假设环境完全按照模型预测的方式发展。
- 简单性:实现相对简单,因为只需要基于当前策略和模型进行一次规划。
- 局限性:对环境变化不敏感,如果实际环境与模型预测不符,可能导致规划失败。
(2)应用场景
- 适用于环境相对稳定、变化较小的情况。
- 适用于规划时间较短、不需要频繁调整策略的场景。
2. 闭环规划(再规划,Re-Planning)
闭环规划,也称为再规划,是一种动态调整规划策略的方法。在闭环规划中,智能体不仅在初始阶段进行规划,而且在执行过程中根据环境的实际反馈和新观测到的信息不断更新和调整规划。
(1)特点
- 适应性:能够适应环境的变化和不确定性,通过不断调整规划来应对环境的实际发展。
- 复杂性:实现相对复杂,需要在执行过程中不断进行规划和调整。
- 鲁棒性:对环境变化具有较好的鲁棒性,能够提高规划的成功率。
(2)应用场景
- 适用于环境变化较大、不确定性较高的情况。
- 适用于需要长期规划和频繁调整策略的场景。
(3)规划的实施步骤
- 无论是开环规划还是闭环规划,规划的实施通常包括以下步骤:
- 模型学习:通过与环境的交互或数据分析,学习环境模型。
- 策略设计:基于环境模型设计决策策略。
- 规划执行:根据策略和模型进行规划,并在环境中执行规划好的动作。
- 反馈调整:在执行过程中收集反馈信息,并根据反馈调整规划策略。
总之,开环规划和闭环规划是强化学习中两种基本的规划方法。开环规划简单但对环境变化不敏感,而闭环规划能够适应环境变化但实现更复杂。在实际应用中,选择哪种规划方法取决于环境的特性、任务的需求以及计算资源的限制。通常,闭环规划因其适应性和鲁棒性,在复杂和动态变化的环境中更受青睐。
10.3.2 经典规划方法
在强化学习领域,规划方法通常用于基于模型的强化学习问题,其中智能体利用环境模型来预测未来的状态和奖励,并优化其决策策略。以下是两种经典的规划方法:
1. 值迭代 (Value Iteration)
值迭代是一种迭代算法,用于计算给定策略下的值函数(Value Function),并找到最优策略。值迭代的核心思想是通过贝尔曼最优方程(Bellman Optimality Equation)不断更新值函数,直到收敛到最优值函数。
值迭代算法的步骤如下所示。
(1)初始化所有状态的值函数为任意值(通常为0)。
(2)重复以下步骤直到值函数收敛:
- 对于每个状态,根据当前值函数和环境模型,使用贝尔曼最优方程更新值函数。
- 贝尔曼最优方程为:V(s)=maxas',rP(s',r∣s,a)[r+γV(s')]
其中,V(s) 是状态 s 的值函数,a 是动作,P(s′,r∣s,a) 是在状态 s 下采取动作 a 转移到状态 s′ 并获得奖励 r 的概率,γ 是折扣因子。
值迭代算法的特点如下所示。
- 简单高效:值迭代算法简单,易于实现,且在许多问题上都能快速收敛。
- 适用性广:适用于各种大小的状态和动作空间。
- 策略评估:值迭代主要用于评估和改进固定策略,而不是直接找到最优策略。
2. 策略迭代 (Policy Iteration)
策略迭代是一种交替执行策略评估(Policy Evaluation)和策略改进(Policy Improvement)的算法,用于找到最优策略。
策略迭代算法的步骤如下所示。
(1)策略评估:给定当前策略,计算每个状态的值函数。这通常通过值迭代或其他方法完成。
(2)策略改进:对于每个状态,找到能够最大化值函数的动作,从而改进当前策略。
重复步骤(1)和(2),直到策略收敛,即策略评估不再导致策略的变化。
策略迭代算法的特点如下所示。
- 直接寻找最优策略:与值迭代不同,策略迭代直接寻找最优策略,而不仅仅是评估值函数。
- 收敛性:策略迭代保证收敛到局部最优策略,如果值函数是准确的。
- 计算成本:在大型状态空间中,策略迭代可能需要更多的计算资源,因为它需要频繁地评估和改进策略。
总之,值迭代和策略迭代是强化学习中两种经典的规划方法。值迭代通过迭代更新值函数来评估和改进策略,而策略迭代通过交替执行策略评估和策略改进来直接寻找最优策略。这两种方法在理论上都有良好的收敛性,但在实际应用中,它们的效率和适用性可能会因问题的特性和规模而有所不同。在基于模型的强化学习中,这些规划方法可以利用精确的环境模型来加速学习过程,提高策略的质量。
10.3.3 采样式规划方法:蒙特卡洛树搜索
蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)是一种用于某些决策过程中的启发式搜索算法,特别是在游戏理论中的完美信息游戏。它通过多次模拟来评估潜在的移动,从而选择最有可能导致胜利的移动。MCTS在基于模型的强化学习中也非常有用,尤其是在复杂的策略选择问题中。
1. MCTS 四阶段
MCTS算法通常分为如下所示的4个阶段。
(1)选择 (Selection):从根节点(当前游戏状态)开始,按照特定的策略,比如UCT(Upper Confidence bounds applied to Trees),选择最有前途的子节点,直到到达一个非终端节点。
(2)扩展 (Expansion):除非所选节点是一个游戏结束节点,否则在所选节点上添加一个或多个子节点,并选择其中一个进行模拟。
(3)模拟 (Simulation/Rollout):从新添加的节点开始,进行随机模拟(也称为“rollout”或“playout”),直到游戏结束或达到预定的模拟深度。这个过程不需要完全遵循实际策略,而是可以使用简化的规则或随机选择来快速完成。
(4)回溯 (Backpropagation):根据模拟的结果更新从根节点到所选节点路径上的所有节点的统计信息。如果模拟结果是胜利,则增加这条路径上节点的胜利次数;如果是失败,则相应地更新失败的统计信息。
2. 探索与利用的平衡:UCB1 算法
在MCTS的选择阶段,需要在探索(exploration)和利用(exploitation)之间做出平衡。UCB1(Upper Confidence Bound 1)算法是一种流行的解决方案,它为每个子节点计算一个值,该值考虑了节点的胜利次数和被访问的次数。UCB1公式为:
UCB1=win rate+ClnNn
其中,N是访问根节点的总次数,n是访问对应子节点的次数,C是探索常数。这个公式确保了即使某些节点看起来更有前途,算法也会探索那些不太确定的节点。
3. MCTS 在基于模型RL中的应用
MCTS在基于模型的强化学习中的应用非常广泛,尤其是在AlphaZero等算法中。AlphaZero使用MCTS来优化它的策略和价值函数,通过在MCTS中进行大量的模拟来评估潜在的移动,并使用这些信息来更新其策略和价值函数。
例如在AlphaZero中,MCTS不仅用于选择动作,而且还用于训练过程中的策略和价值函数的优化。通过在MCTS中模拟大量的游戏,AlphaZero能够学习到复杂的策略,这些策略最终帮助它在围棋、国际象棋和将棋等复杂游戏中取得了超越人类顶尖水平的成绩。
总之,MCTS是一种强大的采样式规划方法,它通过模拟来评估潜在的决策,并在探索和利用之间做出平衡。MCTS的四个阶段(选择、扩展、模拟和回溯)使其能够有效地搜索决策树,并在基于模型的强化学习中找到最优策略。UCB1算法帮助MCTS在探索和利用之间做出平衡,而像AlphaZero这样的算法则展示了MCTS在实际应用中的潜力。
10.3.4 采样式规划方法:模型预测控制
模型预测控制(MPC,Model Predictive Control)是一种基于模型的优化控制方法,其核心思想是通过预测系统未来的行为来优化控制输入。以
1. MPC基本框架
(1)滚动时域优化:MPC 的核心是滚动时域优化(Receding Horizon Optimization)。在每个时间步,MPC 解决一个有限时间范围内的优化问题,优化目标是未来一段时间内的系统性能。优化完成后,只将第一个控制输入应用于系统,然后在下一个时间步重新进行优化。这种滚动优化方式使得 MPC 能够实时适应系统的动态变化。
(2)预测模型:MPC 需要一个准确的系统模型来预测未来的行为。这个模型可以是线性的,也可以是非线性的,具体取决于系统的特性。线性模型通常用于简化计算,而非线性模型则可以更准确地描述复杂系统。
(3)优化目标:优化目标通常是一个代价函数,例如最小化轨迹偏差、能耗或时间。代价函数可以根据具体应用进行设计,以满足不同的性能要求。
(4)约束处理:MPC 可以自然地处理各种约束,例如输入约束、状态约束和终端约束。这些约束可以确保系统的安全性和可行性。
2. 优化器选择
在 MPC 中,选择合适的优化器是关键,因为它直接影响到优化的速度和精度。常见的优化器如下所示。
(1)随机优化(CEM):交叉熵方法(Cross-Entropy Method, CEM)是一种基于采样的随机优化算法。它通过迭代采样和选择最优样本的方式逐步逼近最优解。CEM 的优点是适用于高维优化问题,且不需要计算梯度,但可能在某些复杂问题上收敛速度较慢。
(2)梯度优化(iLQR/DDP):迭代线性二次调节器(Iterative Linear Quadratic Regulator, iLQR)和差分动态规划(Differential Dynamic Programming, DDP)是基于梯度的优化算法,它们通过线性化系统模型和代价函数,利用梯度信息来快速收敛到最优解。这些方法在处理连续控制问题时非常有效,但需要计算雅可比矩阵和海森矩阵,计算复杂度较高。
(3)进化算法:进化算法(如遗传算法、粒子群优化等)是一种启发式优化方法,通过模拟生物进化过程来搜索最优解。它们具有全局优化能力,适用于复杂的非线性问题,但通常计算成本较高,且收敛速度较慢。
3. 轨迹优化与实时控制
MPC的一个重要应用是轨迹优化与实时控制,具体说明如下所示。
(1)轨迹优化:通过优化控制输入序列,使系统的状态轨迹满足特定的目标,例如最小化轨迹偏差、能耗或时间。轨迹优化通常需要考虑系统的动态约束和环境约束。
(2)实时控制:MPC 的滚动优化特性使其能够实时适应系统的动态变化和环境扰动。在每个时间步上,MPC 重新计算最优控制输入,并将其应用于系统。这种实时性使得 MPC 在自动驾驶、机器人控制等领域具有广泛的应用前景。
4. MPC 与强化学习(RL)的结合
近年来,MPC 与强化学习(Reinforcement Learning, RL)的结合成为了一个研究热点。两者的结合可以充分发挥 MPC 的模型优势和 RL 的数据驱动优势:
(1)模型优势:MPC 基于系统模型进行优化,能够提供准确的预测和约束处理能力。这使得 MPC 在处理复杂的动态系统时具有较高的可靠性和安全性。
(2)数据驱动优势:RL 通过与环境的交互来学习最优策略,不需要精确的系统模型。将 RL 与 MPC 结合,可以利用 RL 的数据驱动能力来弥补 MPC 模型不准确的情况,同时利用 MPC 的优化能力来提高 RL 的学习效率。
(3)结合方式
- MPC 作为策略网络:将 MPC 的优化结果作为 RL 策略网络的输出,利用 RL 的奖励机制来调整 MPC 的参数。
- RL 作为模型校正:利用 RL 学习到的模型偏差来修正 MPC 的预测模型,提高 MPC 的性能。
- 混合策略:在某些情况下,可以将 MPC 和 RL 的策略混合使用,根据不同的场景选择合适的控制策略。
总之,模型预测控制(MPC)是一种强大的采样式规划方法,通过滚动时域优化和模型预测,能够实时适应动态环境并满足多种约束。选择合适的优化器(如 CEM、iLQR/DDP 或进化算法)是实现高效 MPC 的关键。MPC 在轨迹优化和实时控制方面具有广泛的应用前景,同时与强化学习(RL)的结合也为解决复杂问题提供了新的思路。
10.3.5 轨迹采样与策略改进
轨迹采样与策略改进是一种通过采样轨迹来优化控制策略的方法。它结合了采样技术和优化算法,旨在通过迭代改进策略来实现更好的性能。以下是具体的内容:
1. 随机优化策略搜索
随机优化策略搜索是一种基于采样的优化方法,通过随机生成候选解并评估其性能来逐步改进策略。随机优化策略搜索方法是PI2(Probabilistic Inference for Learning Control,概率推断学习控制),具体说明如下所示。
(1)原理:PI2 是一种基于概率推断的策略搜索方法。它将策略优化问题转化为一个概率推断问题,通过计算候选策略的概率分布来选择最优策略。
(2)特点
- 概率框架:PI2 使用概率模型来描述策略的不确定性,能够更好地处理噪声和不确定性。
- 采样效率高:通过采样和概率推断,PI2 可以在较少的样本下找到较好的策略。
- 适用于高维问题:PI2 不需要计算梯度,因此在高维策略空间中表现良好。
PI2被广泛应用于机器人控制、自动驾驶等领域,尤其是在需要处理复杂动态环境和不确定性的情况下。
2. 基于采样的值函数估计
基于采样的值函数估计是一种通过采样轨迹来估计值函数(Value Function)的方法。值函数是强化学习中的一个重要概念,用于评估策略的性能。基于采样方法的实现步骤如下所示。
(1)采样轨迹:从当前策略出发,生成一系列轨迹(即状态和动作的序列)。
(2)估计值函数:通过这些轨迹,估计每个状态或状态-动作对的价值。常用的估计方法包括:
- 蒙特卡洛方法(Monte Carlo Methods):通过完整的轨迹来估计值函数,适用于策略评估和控制。
- 时序差分学习(Temporal Difference Learning, TD):通过部分轨迹来估计值函数,计算效率较高,适用于在线学习。
- 深度学习方法:使用神经网络来近似值函数,适用于复杂的状态空间和大规模问题。
(3)策略改进:根据估计的值函数,更新策略以提高性能。常见的策略改进方法包括:
- 策略迭代(Policy Iteration):通过策略评估和策略改进交替进行,逐步优化策略。
- 值迭代(Value Iteration):直接通过值函数的动态规划方程来更新策略。
- 深度强化学习方法:如深度Q网络(DQN)、软演员-评论家(SAC)等,结合深度学习来优化策略。
总之,轨迹采样与策略改进是一种结合采样技术和优化算法的方法,用于优化控制策略。随机优化策略搜索(如 PI2)通过概率推断和采样来搜索最优策略,适用于高维和不确定性的环境。基于采样的值函数估计则通过生成轨迹来估计值函数,并根据值函数来改进策略。这些方法在机器人控制、自动驾驶等领域具有广泛的应用前景。