本地运行开源大语言模型:Ollama的使用指南

本地运行开源大语言模型:Ollama的使用指南

随着人工智能技术的快速发展,越来越多的开源大语言模型(LLM)被开发出来。Ollama是一个允许用户在本地运行这些模型的平台,例如Llama 2。本文将介绍如何使用Ollama在本地运行大语言模型,并探讨其集成和功能特性。

Ollama简介

Ollama通过将模型权重、配置和数据打包成一个Modelfile,简化了大语言模型的设置和配置过程。它优化了包括GPU使用在内的各种细节,使得用户可以更方便地在本地运行模型。Ollama支持多种模型和模型变体,具体列表可以在Ollama模型库中查看。

集成细节

Ollama与LangChain的集成通过langchain-ollama包实现。该包支持本地运行和JavaScript调用,但不支持序列化。用户可以通过以下命令安装该包:

%pip install -qU langchain-ollama

模型特性

Ollama支持多种输入输出模式,包括结构化输出、JSON模式、图像输入、音频输入、视频输入和令牌级流式传输。它还支持本地异步调用。

设置步骤

  1. 下载和安装Ollama:支持的平台包括Windows Subsystem for Linux。
  2. 获取可用的LLM模型:使用命令ollama pull <name-of-model>,例如ollama pull llama3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值