本地运行开源大语言模型:Ollama的使用指南
随着人工智能技术的快速发展,越来越多的开源大语言模型(LLM)被开发出来。Ollama是一个允许用户在本地运行这些模型的平台,例如Llama 2。本文将介绍如何使用Ollama在本地运行大语言模型,并探讨其集成和功能特性。
Ollama简介
Ollama通过将模型权重、配置和数据打包成一个Modelfile,简化了大语言模型的设置和配置过程。它优化了包括GPU使用在内的各种细节,使得用户可以更方便地在本地运行模型。Ollama支持多种模型和模型变体,具体列表可以在Ollama模型库中查看。
集成细节
Ollama与LangChain的集成通过langchain-ollama
包实现。该包支持本地运行和JavaScript调用,但不支持序列化。用户可以通过以下命令安装该包:
%pip install -qU langchain-ollama
模型特性
Ollama支持多种输入输出模式,包括结构化输出、JSON模式、图像输入、音频输入、视频输入和令牌级流式传输。它还支持本地异步调用。
设置步骤
- 下载和安装Ollama:支持的平台包括Windows Subsystem for Linux。
- 获取可用的LLM模型:使用命令
ollama pull <name-of-model>
,例如ollama pull llama3
。