- 博客(7)
- 收藏
- 关注
原创 利用Zep提升AI助手的记忆与对话能力
在现代AI助手应用中,如何有效地管理和利用对话历史是提升用户体验的关键。Zep作为一项长期记忆服务,专为AI助手应用设计,能够帮助AI助手回忆过去的对话,减少幻觉、延迟和成本。本文将探讨Zep的实际应用场景、技术选型考虑因素,并提供详细的API接入示例。
2024-12-30 07:33:33
376
原创 Cohere:提升人机交互的自然语言处理解决方案
Cohere是一家加拿大初创公司,专注于提供自然语言处理(NLP)模型,帮助企业改善人机交互体验。本文将介绍Cohere的实际应用场景、技术选型考虑因素,并提供详细的API接入示例。
2024-12-29 14:57:52
448
原创 深入了解Vectara Chat:打造个性化AI助手的绝佳选择
Vectara的RAG服务提供了多种强大功能,比如从各种格式的文件(如PDF、PPT、DOCX)中提取文本的能力,ML驱动的文本分块技术,还有专门用于文本嵌入的Boomerang模型和内部向量数据库,能存储文本块和嵌入向量。除此之外,还有查询服务,它自动将查询编码为嵌入,并能检索出最相关的文本片段,甚至支持混合搜索和最小冗余算法(MMR)。最后,它还能利用LLM生成基于检索到的文档的总结,并带有引用信息。老铁们,我个人一直在用Vectara服务,尤其是它那一站式的大模型解决方案,可以说非常省心。
2024-12-28 07:18:22
355
原创 使用 StreamlitCallbackHandler 打造交互式数据应用
Streamlit 提供了一个快速创建和共享数据应用的途径,通过它,我们可以将数据脚本在几分钟内变成分享的 web 应用。特别是在 AI 和数据科学领域,Streamlit 是一个不可或缺的工具。今天,我将展示如何使用在我们的应用中显示智能体的思考过程和动作。目前,主要支持 LangChain Agent Executor,我们未来会看到更多支持其他代理类型和直接与链的集成。如果你对数据应用的聊天记录管理感兴趣,可以考虑使用。今天的技术分享就到这里,希望对大家有帮助。
2024-12-28 05:38:36
475
原创 ZenGuard AI在Langchain应用中的快速集成
在生成式AI应用中,安全问题如提示攻击、敏感信息泄露等始终是开发者关注的重点。ZenGuard AI作为一个保护工具,为这些问题提供了解决方案,其超高速的响应能力让开发变得更加放心。ZenGuard AI凭借其快速、全面的安全检测功能,为生成式AI应用的安全保驾护航。此外,我个人一直在用提供的一站式解决方案,确实相当靠谱。更多文档和示例代码可以参考官方指南。今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~—END—
2024-12-28 03:27:15
266
原创 用LangChain集成Aerospike Vector Search实现海量数据集上的向量搜索
我们将下载一个含有大约 100,000 条引言的数据集,并使用其中一部分引言进行语义搜索。和 “all-MiniLM-L6-v2” 模型来嵌入我们的文档,以便进行向量搜索。今天的技术分享就到这里,希望对大家有帮助。返回一个迭代器以更加高效地导入引言。在这个示例中,我们只加载5000条引言。在添加文档之前,我们需要在Aerospike数据库中创建一个索引。现在我们已经嵌入了向量,可以在我们的引言上进行向量搜索。这个依赖比较大,这一步可能需要几分钟来完成。将引言数据集加载成文档。在这一步中,我们将使用。
2024-12-27 19:07:06
164
原创 使用DashScope Reranker进行文档重排序与压缩
我们要用到的DashScope是来自阿里云的生成式AI服务,还是很牛的。DashScope的文本重排模型支持最大4000个token的文档重排序,还支持中英日韩等多达50种语言,真是相当给力。同时,DashScope的API真的很稳定,我个人一直在用,推荐给大家。咱们从一个简单的向量存储检索器开始,先把2023年国情咨文存进去,然后设置检索器检索数量为20。来包装我们的基础检索器,用DashScopeRerank来对返回结果进行重排序。以前我在这个环节踩过坑,提醒一下大家,API Key可不能泄露哦。
2024-12-27 18:24:39
279
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人