使用Facebook Messenger数据进行模型微调的完整指南

老铁们,今天我们来聊聊如何使用Facebook Messenger的数据来微调一个AI模型。这波操作可以说是相当丝滑,咱们一步步来看。首先,你需要下载你的Messenger数据,然后通过一些数据处理步骤,为微调AI模型做准备。最终,我们会使用OpenAI的服务进行微调,并在LangChain应用中使用结果模型。下面是详细步骤:

1. 下载数据

首先,你需要从Facebook下载你的Messenger数据。注意,必须以JSON格式下载,而不是HTML格式。这里有详细的下载步骤说明。

为了方便演示,我们在这个Google Drive链接上提供了一个示例数据包。下面是下载并解压的代码示例:

import zipfile
import requests

def download_and_unzip(url: str, output_path: str = "file.zip") -> None:
    file_id = url.split("/")[-2]
    download_url = f"https://drive.google.com/uc?export=download&id={file_id}"

    response = requests.get(download_url)
    if response.status_code != 200:
        print("Failed to download the file.")
        return

    with open(output_path, "wb") as file:
        file.write(response.content)
        print(f"File {output_path} downloaded.")

    with zipfile.ZipFile(output_path, "r") as zip_ref:
        zip_ref.extractall()
        print(f"File {output_path} has been unzipped.")

url = "https://drive.google.com/file/d/1rh1s1o2i7B-Sk1v9o8KNgivLVGwJ-osV/view?usp=sharing"
download_and_unzip(url)

2. 创建聊天加载器

下载完数据后,我们会使用FacebookMessengerChatLoader来加载聊天记录。如果你有多个文件,可以使用目录加载器FolderFacebookMessengerChatLoader

from langchain_community.chat_loaders.facebook_messenger import (
    FolderFacebookMessengerChatLoader,
    SingleFileFacebookMessengerChatLoader,
)

loader = SingleFileFacebookMessengerChatLoader(
    path="./hogwarts/inbox/HermioneGranger/messages_Hermione_Granger.json",
)
chat_session = loader.load()[0]
print(chat_session["messages"][:3])

3. 准备微调数据

聊天记录加载完毕后,我们需要调整数据,将其转换为AI模型可接受的格式。

from langchain_community.chat_loaders.utils import (
    map_ai_messages,
    merge_chat_runs,
)

merged_sessions = merge_chat_runs(chat_sessions)
alternating_sessions = list(map_ai_messages(merged_sessions, "Harry Potter"))

接着我们将这些数据转换为OpenAI格式:

from langchain_community.adapters.openai import convert_messages_for_finetuning

training_data = convert_messages_for_finetuning(alternating_sessions)
print(f"Prepared {len(training_data)} dialogues for training")

4. 微调模型

准备好训练数据后,我们就可以开始微调模型了。确保已安装openai库并正确设置OPENAI_API_KEY

import json
import time
from io import BytesIO
import openai

# 写入内存中的jsonl文件
my_file = BytesIO()
for m in training_examples:
    my_file.write((json.dumps({"messages": m}) + "\n").encode("utf-8"))

my_file.seek(0)
training_file = openai.files.create(file=my_file, purpose="fine-tune")

# 启动训练任务
job = openai.fine_tuning.jobs.create(
    training_file=training_file.id,
    model="gpt-3.5-turbo",
)

# 等待训练完成
status = openai.fine_tuning.jobs.retrieve(job.id).status
while status != "succeeded":
    time.sleep(5)
    job = openai.fine_tuning.jobs.retrieve(job.id)
    status = job.status

5. 在LangChain中使用

一旦微调完成,你可以在LangChain中使用这个模型:

from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate

model = ChatOpenAI(
    model=job.fine_tuned_model,
    temperature=1,
)

prompt = ChatPromptTemplate.from_messages(
    [("human", "{input}"),]
)

chain = prompt | model | StrOutputParser()

for tok in chain.stream({"input": "What classes are you taking?"}):
    print(tok, end="", flush=True)

今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值