keras模块之-优化器(optimizers)--笔记

本文介绍了深度学习中常用的优化器,包括随机梯度下降(SGD)及其变种,如RMSprop、Adagrad、Adadelta、Adam、Adamax和Nadam。通过实例展示了如何在Keras中配置和使用这些优化器,解释了关键参数如学习率、动量、衰减和Nesterov动量的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

     本笔记由博客园-圆柱模板 博主整理笔记发布,转载需注明,谢谢合作!

       优化器是调整每个节点权重的方法,如:

model = Sequential() 
model.add(Dense(64, init='uniform', input_dim=10)) model.add(Activation('tanh')) 
model.add(Activation('softmax')) 
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='mean_squared_error', optimizer=sgd)

  可以看到优化器在模型编译前定义,作为编译时的两个参数之一

     代码中的sgd是随机梯度下降算法 
lr表示学习速率 
momentum表示动量项 
decay是学习速率的衰减系数(每个epoch衰减一次) 
Nesterov的值是False或者True,表示使不使用Nesterov momentum

以上4个参数以后具体学习了再解析

除了sgd,还可以选择的优化器有RMSprop(适合递归神经网络)、Adagrad、Adadelta、Adam、Adamax、Nadam

 

转载于:https://www.cnblogs.com/68xi/p/8661108.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值