大模型本地部署

⼀、安装ollama

ollma是⼀个⼤模型管理⼯具,使⽤ollama可以⾮常⽅法的下载⼤模型到本地,以及管理⼤模型(运
⾏、关闭、删除等)。
访问ollama官⽹ https://ollama.com/
点击下载,选择对应平台的安装包,下载后直接安装即可。
在这里插入图片描述

⼆、ollama关闭开机启动

Ollama 默认会随 Windows ⾃动启动,可以在「⽂件资源管理器」的地址栏中访问以下路径,删除其
中的Ollama.lnk快捷⽅式⽂件,阻⽌它⾃动启动。这样在需要的时候,⼿动启动即可。

%APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup

在这里插入图片描述

三、配置环境变量

1. 配置ollama启动程序到path环境变量

在开始菜单中,找到ollama快捷⽅式,找到ollama.exe所在⽬录,复制该⽬录
配置到系统的环境变量中
在这里插入图片描述

2. 配置模型下载⽬录

Ollama 的默认模型存储路径如下:C:\Users{⽤⼾名}.ollama\models,⽆论 C 盘空间⼤⼩,需要安
装多少模型,都建议换⼀个存放路径到其它盘,否则会影响电脑运⾏速度。
打开「系统环境变量」,新建⼀个系统变量OLLAMA_MODELS ,然后设置ollama模型的存储路径。
变量名: OLLAMA_MODELS
变量值: D:\Work\ollama\models (替换成你⾃⼰的⽬录)

3. 启动ollama

在开始菜单-所有程序中,点击启动ollama。也可以通过在命令⾏中,执⾏ ollama serve 命令启

4. cmd中检查ollama是否正常安装

打开 “命令提⽰符”,输⼊ ollama -v ,如果显⽰版本号,代表安装配置ollama成功
在这里插入图片描述

5.下载⼤模型到本地

先查看ollama⽀持的⼤模型:https://ollama.com/library
选择适合⾃⼰电脑的模型版本,7b、8b代表模型参数的多少,版本越⾼,模型越智能,同时占⽤资源
也越多。

PS:很吃内存,启动后电脑风扇会起飞,一定要配置高,我的是32G+1T

在这里插入图片描述

在“命令提⽰符”窗⼝中,执⾏命令:

ollama run deepseek-r1:7b

启动成功后,就可以在命令提⽰符窗⼝和deepseek进⾏交互了。
在这里插入图片描述

四、安装ollama web客⼾端open-webui

1. 安装Python(Python版本不能超过3.11)

打开Python官⽹,选择对应的操作系统平台,下载安装包
Windows版本:https://www.python.org/downloads/windows/
Mac版本:https://www.python.org/downloads/macos/

在cmd窗⼝中,验证Python版本:python -V
在这里插入图片描述

2. 配置pip下载源

在cmd窗⼝中执⾏命令

pip config set global.index-url https://mirrors.aliyun.com/pypi/simple

3. 下载open-webui

在cmd窗⼝中执⾏命令

pip install open-webui

这里我遇到个坑,最后换源搞定的,解决方案见:解决路径

4. 升级open-webui

在cmd窗⼝中执⾏命令

pip install open-webui --upgrade

5. 启动open-webui

在cmd窗⼝中执⾏命令

open-webui serve

6. 访问open-webui

执⾏完上⼀步命令后,等待1分钟左右
浏览器访问 http://127.0.0.1:8080
创建管理员账号,左上⻆选择对应模型,即可开始使⽤
在这里插入图片描述
PS:如果一天部署完不成,在启动open-webui前一定要启动ollama

展示
在这里插入图片描述

### 豆包大模型本地部署方法与教程 豆包大模型(DouBao Model)作为一种先进的深度学习模型,其本地部署需要结合硬件配置、软件环境以及具体的工具链来完成。以下是关于豆包大模型本地部署的相关信息和教程: #### 1. 硬件需求 在进行本地部署前,需要确保计算机的硬件配置满足运行大模型的需求。尽管大模型训练阶段需要高昂的计算资源,但部署后的推理阶段对硬件的要求相对较低[^1]。然而,为了保证流畅运行,建议使用以下配置: - **CPU**:高性能多核处理器。 - **GPU**:推荐使用 NVIDIA GPU,支持 CUDA 和 cuDNN 的版本。 - **内存**:至少 16GB RAM,推荐 32GB 或更高。 - **存储**:足够的硬盘空间以存储模型文件和缓存数据。 #### 2. 软件环境准备 在本地部署豆包大模型之前,需要安装并配置以下软件环境: - **操作系统**:推荐使用 Linux(如 Ubuntu 20.04+)或 Windows 10/11。 - **Python**:安装 Python 3.8 或更高版本。 - **CUDA 工具包**:如果使用 NVIDIA GPU,需安装对应版本的 CUDA 驱动程序[^2]。 - **依赖库**:安装必要的 Python 库,例如 `transformers`、`torch` 和 `numpy`。 ```bash pip install transformers torch numpy ``` #### 3. 模型管理工具 为了简化模型的部署过程,可以使用专门的模型管理工具,例如 OllamaOllama 提供了友好的命令行界面,用于下载、加载和运行大模型[^2]。 ```bash # 安装 Ollama curl https://ollama.ai/install.sh | sh # 下载豆包大模型 ollama pull doubao-model # 运行模型 ollama run doubao-model ``` #### 4. 可视化交互工具 为了增强用户体验,可以集成可视化交互工具,例如 Open-WebUI 或 Chatbox。这些工具提供了图形化的用户界面,方便用户与模型进行交互[^2]。 ```bash # 安装 Open-WebUI git clone https://github.com/open-webui/chat.git cd chat pip install -r requirements.txt # 启动 WebUI python app.py ``` #### 5. 性能优化 为了提高模型的运行效率,可以采取以下措施: - 使用 NVIDIA 驱动和 CUDA 工具包加速推理过程[^2]。 - 对模型进行量化处理(例如 INT8 量化),以减少内存占用和提升速度。 - 配置 GPU 批量大小(Batch Size)以平衡性能和资源消耗。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer # 加载模型和分词器 model = AutoModelForCausalLM.from_pretrained("doubao-model", device_map="auto") tokenizer = AutoTokenizer.from_pretrained("doubao-model") # 推理示例 input_text = "你好,豆包!" inputs = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_length=50) print(tokenizer.decode(outputs[0])) ``` #### 6. 自定义安装路径 如果需要自定义模型的安装路径,可以使用打包工具将相关文件和脚本封装成可执行程序。例如,使用 PyInstaller 将 Python 脚本转换为独立的可执行文件。 ```bash # 安装 PyInstaller pip install pyinstaller # 打包脚本 pyinstaller --onefile your_script.py ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值