- 博客(195)
- 收藏
- 关注
原创 从 0 到 1 构建湖仓体系, Apache Doris 湖仓一体解决方案全面解读
此外,Doris 的物化视图采用高性能存储格式,通过列存、压缩和智能索引技术,提供高效的数据访问能力,能够作为数据缓存的替代方案,提升查询效率。同时,Iceberg、Hudi、Delta Lake 等开放表格式发挥关键作用,它们不仅支持数据的近实时更新、高效的快照管理,还兼容 SQL 标准,使得数据既可以像传统数据库表一样进行事务性操作,又能充分利用数据湖的分布式存储与弹性计算优势,实现数据在数据湖与数据仓库场景间的无缝切换,为实时数据处理与历史数据分析提供统一的数据基础。
2025-07-08 15:35:47
1055
原创 AI编程的核心方法论
AI时代编程变革:方法论与商业模式探索 在AI技术飞速发展的当下,编程领域正经历深刻变革。本文系统阐述了AI编程的核心方法论,包括精准需求挖掘、高效开发流程、产品迭代策略,以及执行力和创造力的平衡。同时探讨了三种可行的商业模式:流量变现、定制开发服务和投产比提升。文章指出,AI工具大幅降低了开发门槛,使个人开发者能够快速实现创意,但强调专业素养仍是关键。未来,自然语言编程和自动化测试等趋势将进一步改变行业格局。文末建议开发者遵循"模仿-理解-创新"的学习路径,持续提升底层技术能力以驾驭A
2025-07-04 14:04:21
289
原创 MCP 协议的未来发展趋势与学习路径
MCP协议作为AI领域的重要通信标准,正在快速演进并展现出三大发展趋势:技术升级方面,新版协议在性能(连接耗时降低43.75%)、安全(引入抗量子加密)和多Agent协作上有显著突破;应用层面正形成"Agent互联网"生态,向行业垂直化、低代码开发和边缘计算延伸;技术融合方面,与量子加密、区块链、AR等前沿技术结合创造新场景。预测到2025年全球MCPServer将超50万,成为AI基础设施。对于开发者,建议从Python基础、MCP文档学习起步,逐步过渡到Server开发实战,通过项目
2025-07-04 14:03:12
1027
原创 Cursor Rules优化实战:构建高效稳定的AI代码生成规范体系|得物技术
摘要:本文探讨了AI辅助编程工具CursorIDE在团队协作中的规范优化实践。针对旧规范存在的规则冗余、角色冲突和维护困难三大痛点,提出了一套三层架构的AI协作规范体系:基础层(7个职责单一的技术规范)、模块层(按功能拆分的开发规范)和流程层(业务场景标准化)。通过统一规则格式、明确执行协议和示例驱动的方式,实现了规范的可维护性和AI执行效率的提升。实践表明,这种分层架构解决了AI生成代码的质量一致性问题,为团队提供了高效的AI协作开发模式。
2025-07-03 15:26:48
1006
原创 AI编程实战手册-工具篇(字节 Trae)
Trae是由字节跳动推出的AI编程辅助工具,集成了代码编辑、项目管理与智能AI助手功能。它支持多种AI模型,提供代码补全、错误修复、自然语言生成代码等能力,适合新手降低编程门槛。安装过程简单,支持从VSCode/Cursor导入配置,提供主题选择和登录验证。界面分为文件管理、代码编辑和AI交互区,支持创建项目并智能辅助开发。最新版本整合了Chat与Builder功能,增加了MCP集成、Agent系统和Doc/Web上下文扩展能力,如查询天气等实用功能,持续优化AI编程体验。
2025-07-02 21:19:45
980
原创 AI编程实战手册
AI编程工具快速发展,为开发者提供智能辅助,但零基础用户仍需掌握基础工具链。文章分为开发准备、AI工具使用指南(Cursor为例)和实战开发流程三部分,详细列出必备软件、环境配置、团队协作等准备工作,并演示如何利用AI从需求分析到部署上线的完整产品开发过程。文中强调AI工具作为助手而非替代者的定位,建议开发者遵循"模仿-理解-创新"的学习路径,同时提供提示词工程、多工具协同等进阶技巧。最终指出专业素养仍是核心,持续学习才能充分发挥AI效能。
2025-07-02 15:41:06
1623
原创 Pandas 核心操作知识大全
本文总结了Python数据分析库Pandas的常用操作速查指南。主要内容包括:数据导入和预处理(缺失值处理、独热编码、数据归一化)、数据操作(筛选、排序、分组聚合、透视表)、数值计算(差值、变化率、滑动窗口)以及可视化设置。还涵盖了数据库连接、机器学习算法集成(KMeans、线性回归等)和常用统计方法。文中提供了大量代码示例,如数据筛选df[df['popularity']>3]、分组统计iris.groupby('target').mean()等实用操作,适合作为数据分析工作的快速参考手册。
2025-06-30 16:26:28
300
原创 数据分析师转行最全攻略
数据分析师主要分为技术型和业务型两类,技术型要求较强的算法和数据结构知识,业务型门槛较低但需避免沦为报表分析师。转行数据分析可行,建议根据自身背景选择方向:技术背景可尝试技术型,非技术背景建议业务型。核心技能包括Excel、SQL、Python,其中SQL是重点,Python掌握基础即可。此外还需学习统计学、机器学习基础和分析思维。实战项目经验很重要,可通过Kaggle等平台积累。面试时重点考察工具使用、理论知识和业务逻辑,需准备项目案例和数据分析报告能力。要成功转行,需系统学习并积累实战经验。
2025-06-30 15:51:44
900
原创 图解Pandas
本文介绍了Pandas数据处理的常用操作,包括数据筛选、分组聚合、排序、连接和重塑等核心功能。主要内容涵盖:1)使用sort_values和groupby进行分组排序和中位数计算;2)通过loc进行行列筛选;3)数据连接(join/merge)的方法;4)数据重塑操作(pivot/melt/stack/unstack);5)索引设置与重置技巧。这些操作是使用Pandas进行数据分析和挖掘的基础,熟练掌握可以提升数据处理效率。
2025-06-27 14:33:13
411
原创 巨人肩膀使用指南(下)
《巨人肩膀:AI开发者的全能效率平台》 巨人肩膀作为一站式开发者平台,不仅提供技术社区交流功能,更通过六大类编程工具(SQL/优化/命令/文件/编码/开发)实现可视化操作,显著提升开发效率。平台紧跟AI趋势,推出三大核心功能:1)数据工坊实现AI自动分析Excel/CSV数据并生成可编辑报告;2)PromptIDE提示词开发工具支持多模型优化与跨平台转义;3)NotepadAI智能笔记整合代码编辑与AI辅助写作。所有功能免费开放,包含数百个可直接复用的行业提示词模板,有效降低开发者工作强度。
2025-06-27 14:05:04
851
原创 Pandas的基础应用
Pandas库是Python数据分析的核心工具,主要提供Series(一维数据)和DataFrame(二维数据)两种数据结构。Series可通过列表、数组或字典创建,支持多种索引和切片操作,并提供统计、数据处理、排序等方法。DataFrame可通过二维数组、字典、CSV/Excel文件或SQL查询创建,具备强大的数据获取、筛选、重塑和分析功能,包括分组聚合、透视表、数据可视化等。此外,Pandas还支持多种索引类型(如分类索引、多级索引、时间索引)和高级数据分析操作(如独热编码、窗口计算、相关性分析)。这些
2025-06-26 14:46:33
614
原创 Pandas笔记
在处理大规模数据集时,pandas 会花费一些时间来进行.map()、.apply()、.applymap() 等操作。•其他一些很棒的功能:read_clipboard, read_sql。一开始并不是那么简单,首先需要掌握语法,然后会发现一直在使用这个功能。•最常用的功能:read_csv, read_excel。正如前面解释过的,为了优化代码,在一行中将函数连接起来。它在同一幅图中画出了两列的所有组合。•易用,将所有复杂、抽象的计算都隐藏在背后了;•快速,即使不是最快的也是非常快的。
2025-06-26 14:43:43
238
原创 Markdown 语法学习指南
《Markdown简明指南:轻量级标记语言入门》 摘要:Markdown是一种易学易用的轻量级标记语言,通过简单符号(如#表示标题,加粗文本)即可实现文档格式化。其优势在于纯文本可移植、跨平台兼容和未来适应性,广泛用于网站内容、技术文档、笔记记录等场景。使用流程包括创建.md文件、通过专用工具转换为HTML或其他格式。尽管不同平台存在语法差异(称为"方言"),但核心功能保持一致。新手建议选择支持标准语法的工具,如VS Code或在线编辑器,半小时即可掌握基础用法,显著提升文档编写效率。
2025-06-26 14:38:34
1016
原创 prompt的基本原理与建议
在 和大模型 对话时,亦或者在使用和设计prompt 时,有以下几个原则与建议。记住这几个原则,能让你写出 更好的 prompt.如果你是直接使用AI 产品,比如ChatGPT 或 者Midjourney, 那无需在童这个原则。如果你是通过API 或 者OpenAI Playground 的方式使用,则建议你先使用最新的模型测试之所以强调一定要使用最新的模型,是因为不使用最新的模型部分技术和数据在不更新的情况下,使用起来是超级 麻烦的、超级不顺利的~这个是对结果影响最大的因素。
2025-06-26 12:14:56
706
原创 Paimon在各大公司生产实践和优化总结
《Paimon在各大企业的落地实践与技术优势》摘要:本文总结了Apache Paimon在Vivo、Shopee、阿里、抖音等企业的应用实践。Paimon作为新一代数据湖框架,主要解决了传统Lambda架构的时效性不足(从小时级提升至分钟级)和实时链路成本高的问题。核心应用场景包括:1)统一ODS层存储,替代Hive+Kafka双链路;2)维度表LookupJoin;3)宽表场景的PartialUpdate;4)PV/UV实时计算(蚂蚁案例显示CPU降低60%);5)湖上OLAP分析。其LSM树架构和ACI
2025-06-24 10:46:44
971
原创 学习 MCP 最好的时机是 7 个月前,其次是现在
摘要:MCP(Model Context Protocol)是一种标准化协议,通过客户端-服务器架构实现LLM与外部资源的高效互联,突破LLM固有能力边界。其核心组件包括MCP Host(交互界面)、Client(协议转换)和Server(能力代理)。Server提供Resources(数据)、Tools(任务执行)和Prompts(提示模板)三类能力。相比Function Calling,MCP的统一协议降低了接入成本,使业务团队都能参与智能体构建浪潮。虽然落地仍需解决性能、安全等问题,但MCP为LLM赋
2025-06-19 14:33:47
573
原创 巨人肩膀使用指南(上)
“巨人肩膀”是一个专注于AI与IT技术开发的综合平台,为全球开发者提供前沿技术分享和实战经验交流。平台包含三大核心功能:技术社区矩阵覆盖人工智能、大数据等上百个细分领域,汇聚官方团队、开源项目和个人开发者;专栏博客系统支持Markdown/富文本编辑和AI辅助写作,提供付费专栏等多样化内容形态;专业技术资料库满足各层次学习需求。平台通过开放共享的生态,帮助开发者实现技术成长与知识变现,构建起连接全球技术爱好者的创新基础设施。
2025-06-19 13:57:20
562
原创 企业 AI 转型困难重重,CEO 该如何破局?
《企业AI转型:CEO的高效落地指南》摘要:面对AI转型困境,本文提出系统化解决方案:1)通过标杆项目激发团队内生动力;2)分层次构建AI认知体系(全员启智-骨干强化-实战培养);3)建立长效激励机制(绩效管理、案例分享、跨部门协作)。基于福格行为模型,强调动机、能力、触发三要素协同,建议企业从示范项目切入,逐步推进文化变革。文章特别指出,中小型企业应聚焦核心业务场景实现局部突破,而管理者需躬身入局以提升战略决策精准度。(149字)
2025-06-19 09:54:58
841
原创 Paimon生产环境问题小总结
本文总结了使用Apache Paimon过程中遇到的常见问题及解决方案,主要涉及小文件处理、性能优化、内存管理等方面。针对小文件问题,建议调整Checkpoint间隔、WriteBuffer大小和合理设置Bucketkey;性能优化可通过并行度设置、本地合并和文件编码选择实现;内存不足需增加堆内存或优化分桶策略。文章还介绍了快照冲突处理、维度表关联优化、文件读取异常等问题的解决方法,并指出新版本引入的DeletionVectors在平衡写入和查询性能方面的优势。这些经验总结来自生产实践和社区讨论,后续将持续
2025-06-16 14:32:07
865
原创 数据分析这6个环节可以使用AI,高效提升效率
AI赋能数据分析:自动化提速与工具应用 数据分析中AI通过机器学习算法快速处理海量数据,其优势体现在:1)提升速度与效率,自动生成代码和报告;2)智能校验数据质量;3)降低使用门槛,实现数据民主化。AI在数据分析中的六大应用场景包括:代码生成与调试、智能解读分析结果、合成数据生成、自动创建可视化仪表盘、图像数据自动录入以及智能数据清洗。这些功能显著提升分析效率,使分析师能聚焦于价值挖掘而非数据处理。当前AI工具如ChatGPT、TableauGPT等正重塑传统数据分析流程。
2025-06-16 14:18:15
961
原创 Apache SeaTunnel MCP Server:让AI成为你的ETL助手
ApacheSeaTunnelMCPServer 通过MCP协议为AI编程工具(如Cursor、VSCode)提供SeaTunnel接口文档,实现智能交互。它允许开发者通过自然语言指令完成作业提交、监控、日志解析等操作,并能自动生成配置文件和运维报告。配置简单,只需Python环境和SeaTunnel 2.3.9+版本即可使用,支持RESTful API调用。典型应用场景包括:一键提交作业、实时监控运行状态、智能分析日志等。该项目持续迭代中,欢迎开发者参与贡献。
2025-06-13 15:52:44
571
原创 从Excel到AI:人人都是数据驱动者的时代正在到来
AI正在重塑数据分析领域,降低专业门槛并提升效率。传统数据分析面临四大障碍:思维素养缺乏、数据质量问题、专业知识和工具门槛。AI赋能全流程:从数据获取(自动SQL生成)、清洗(修复70%耗时)、分析(自动建模)到可视化(一键生成报告)。案例显示AI可在2小时内完成人工2周的工作量。虽然存在数据安全、处理能力等挑战,但AI实现了"数据民主化",让业务人员也能进行专业分析。未来关键在于提出好问题而非掌握工具,AI不会取代分析师,而是让更多人具备数据分析能力。
2025-06-13 15:38:32
628
原创 Prompt库+提示词调优=提示词定制自由
摘要:提示词工程作为AI应用的核心技术,其高质量撰写直接影响大模型效果。推荐"巨人肩膀"提示词广场提供数百个免费提示词模板,覆盖职场、教育等多元场景。配套开发工具支持AI生成、多轮优化、格式编辑及多模型兼容,可实现提示词一键测试、转义复制及价值共享。该资源库与工具链为从业者提供了从基础应用到专业开发的完整解决方案。
2025-06-12 14:25:55
358
原创 Paimon生产环境问题小总结
本文主要总结一下过去使用Paimon的过程中遇到的一些问题,在这个过程中参考了官网、各大云平台的文档,以及参考了大量Gituhub和社区讨论的内容。Paimon社区还在高速发展中,本文仅当成一个速查笔记,后续会持续更新。以下是遇到的问题列表,以及常见的解决方案,针对不同的版本或者使用场景可能略有不同,大家可以自己尝试。
2025-06-12 14:05:10
749
原创 告别excel:AI 驱动的数据分析指南
摘要:数据分析是职场必备技能,但传统的数据处理流程耗时费力。本文介绍了如何利用AI工具高效完成数据分析全流程:1)数据预处理与清洗 - 通过提示词让AI自动识别并处理数据问题;2)数据分析与挖掘 - AI可提供分析指标、维度和可视化建议;3)数据可视化呈现 - 生成交互式HTML数据看板。文中提供了完整的提示词模板和使用案例,包括SQL查询优化和销售数据分析报告自动生成。AI工具如PromptIDE和数据工坊能显著提升分析效率,让数据分析师聚焦于洞察而非数据处理。(150字)
2025-06-11 15:23:15
1876
1
原创 【Gartner权威解答】:合格CTO必懂的开源软件十大热点问题
开源软件推动创新并降低成本,但需有效治理规避风险。几乎所有IT组织都在关键任务中使用开源软件(OSS),以获得灵活性、创新和成本优势。然而,OSS存在质量、安全和可持续性风险,尤其缺乏支持合同时风险更高。建议CTO将开源视为战略投资,建立开源治理机制(如开源项目办公室OSPO),并制定优先关键技术领域的战略计划。开源的优势包括自由访问源代码、社区支持和成本节约,但需评估技术、法律和安全风险。应通过项目活跃度、社区支持和许可证合规性评估OSS可行性。常见的OSS商业模式包括商业化支持、开放核心和SaaS模式。
2025-06-11 13:50:37
1047
原创 如何用 AI 学习比别人快 10 倍?
最近我在 YouTube 上看到一个很火的视频:如何用 AI 比任何人快 10 倍地学习任何东西?视频创作者丹·科伊(Dan Koe)出生于 1993 年,个人资产超过 5000 万美金,仅 2023 年就收入 420 万,利润率高达 98%!这么高的利润率从哪来呢?关键在于,他打造了一家真正的「一人公司」,没有员工,不用团队,几乎所有工作他一个人就能完成。。如今网络上学习资源多如牛毛,视频教程、书籍教材、播客铺天盖地。可是,很多人学得越多,负担越重。
2025-06-10 15:12:04
605
原创 AI时代,数据分析师如何成为不可替代的个体
在AI重塑数据分析行业的时代,数据分析师需提升业务穿透力、策略想象力和结果掌控力等核心能力,将数据转化为商业洞察,超越AI的相关性分析,识别伪洞察。真正的竞争优势在于数据分析思维和逻辑,而非工具使用。与AI协同,聚焦本质问题,创造独特价值,才能避免被取代。
2025-06-10 14:55:52
1182
原创 9个数据分析指令为工作赋能
《AI数据分析全流程指南》介绍了从数据预处理到报告生成的一站式解决方案。文章详细解析了9大核心场景:1)分析思路设计;2)指标体系建设;3)数据清洗规范;4)SQL代码编写;5)查询性能优化;6)统计分析方法;7)可视化呈现技巧;8)AB测试检验;9)分析报告撰写。重点推荐了免费工具"数据工坊",支持上传CSV/Excel/JSON格式数据,通过AI智能生成分析维度和可视化报告,并提供模板复用、实时问答等功能,5步即可完成专业级数据分析(上传数据→生成维度→创建报表→编辑优化→下载分享)
2025-06-09 14:52:48
1252
原创 未来已来——迎接数据分析的 AI 时刻
AI时代为数据分析师带来效率革命、认知升级与决策赋能,从自动化数据处理到深度模式洞察,AI成为强大助手而非对手。人机协同的新范式要求分析师强化业务理解、批判性思维与沟通能力,抓住技术红利进化技能,成为驾驭AI的先行者。
2025-06-09 12:06:45
894
原创 基于AI大模型的数据治理体系
本文探讨了大模型时代下的数据治理挑战与解决方案。大模型(如DeepSeek、GPT等)依赖海量数据和计算资源,但面临数据质量、安全、成本等问题。数据治理需从战略、管控、技术等多维度构建体系,并利用AI大模型实现智能化治理,包括数据标准管理、元数据挖掘、质量监控及安全防护。未来,智能化、区块链和边缘计算将进一步提升数据治理效率与安全性。
2025-06-06 14:37:54
1023
原创 数据仓库架构演进:为什么99%的企业还在用Hive?
本文探讨了数据仓库架构从混沌到有序的演进历程,重点分析了分层架构(ODS/CDM/ADS)的核心价值与技术实现。对比了Hive与Doris在实时查询、存储格式等方面的优劣,以及云原生架构的降本增效能力。针对实时与离线协同场景,剖析了Lambda/Kappa架构的局限性及混合架构解决方案。最后展望AI驱动治理与数据资产化趋势,涵盖智能质检、联邦学习等创新实践。
2025-06-06 14:24:50
602
原创 用好AI 提示词五大要素,让对话更丝滑
AI提示词五要素(角色、背景、任务、规则、输出格式)是构建有效提示的框架,通过明确角色扮演、提供上下文、设定具体任务、限制规则和指定格式,可显著提升AI回答质量。PromptIDE提示词开发工具能一键生成结构化提示词,并支持调整优化,如为极简咖啡馆设计LOGO的案例所示,涵盖设计需求、约束条件及输出要求,实现精准控制AI输出内容。
2025-06-06 14:12:34
1075
原创 数据无界、湖仓无界,Apache Doris 湖仓一体典型场景实战指南
Apache Doris湖仓一体方案深度解析:三大核心场景实践 本文聚焦Apache Doris湖仓一体方案在三大典型场景的最佳实践: 湖仓分析加速:通过本地磁盘缓存(SSD介质)和物化视图透明改写技术,查询性能提升93倍; 多源联邦分析:支持动态创建Catalog连接Hive/Iceberg/MySQL等数据源,实现跨源SQL关联查询; 湖仓数据处理:提供定时任务调度、分层加工(DWD/DWS)和数据写回功能,形成数据处理闭环。 方案采用统一SQL引擎,实现数据无界访问,降低架构复杂度,显著提升企业数据处
2025-06-05 15:30:16
703
原创 30个让AI扮演产品经理的提示词
本文分享了30个AI提示词,帮助AI扮演产品经理角色,涵盖产品规划、功能设计、用户体验、市场推广、用户增长、数据分析、跨部门协作、产品迭代、竞品分析及创新趋势等十大领域。这些提示词引导AI从用户需求出发,优化产品功能,提升用户体验,制定市场策略,并通过数据驱动决策,助力产品在竞争中脱颖而出。
2025-06-05 15:26:55
991
原创 怎么让AI为你写数据分析报告?看这篇就够了
《数据工坊报告助手操作指南》介绍了6个核心使用步骤:1)登录巨人肩膀平台(www.atbigapp.com)进入数据工坊;2)上传CSV/Excel/JSON格式数据;3)AI智能生成分析维度并支持自定义调整;4)自动生成数据报告(需等待数分钟);5)下载单维度或完整报告;6)即将推出的模板功能可保存常用分析模式。平台还提供全程AI问答支持,目前可免费使用。
2025-06-04 15:11:26
667
原创 如何建设一个数据治理大数据平台解决方案?
《数据治理大数据平台解决方案》提出了一体化数据管理框架,采用"一套标准、一个仓库、三个中心"架构,实现数据融合治理与智能应用。方案包含5大类26项标准规范,构建分布式与传统数仓结合的融合架构,通过数据治理中心实现"5化9管理"全流程管控,涵盖数据质量、安全、资产可视化等维度。数据服务中心提供加工、共享等能力,技术层面整合Hive、Spark等引擎。最终形成涵盖资源管理、服务平台和分析工具的三位一体体系,实现数据资产价值最大化与持续质量提升。
2025-06-04 11:33:19
383
原创 超全!运营人必备的30个分析模型
本文整理了30个运营人常用的分析模型,涵盖战略思维、用户运营、产品营销和创新增长四大类。从金字塔原理、3W黄金圈等思维工具,到AARRR、RFM等用户模型,再到4P、KANO等产品方法论,以及增长飞轮、蓝海战略等创新框架,每个模型均配有含义说明、应用场景和使用案例。强调模型需结合业务数据灵活运用,建议优先掌握3-5个核心模型并持续迭代更新。
2025-05-28 11:31:29
457
原创 计算效率提升 10 倍,存储成本降低 60%,灵犀科技基于 Apache Doris 建设统一数据服务平台
在数据存储方面也进行了类似的划分,从而实现数据生产与业务应用的同时兼顾,提高了数据管理的可控性,降低了运维复杂度。•实时处理链路:在实时数据处理流程中,数据通过爬虫的方式写入 Kafka,Flink 读取 Kafka 的信息并根据系统下发在 Redis 的数据处理规则,完成数据的处理并最终写入 TiDB,提供实时的数据查询服务。•流量控制:针对常规的任务处理,控制整体的应用并发,合理利用闲时时间进行的数据的生产工作,确保能够在高峰期保持系统的高性能,同时在低峰期最大化资源的使用,提高了整体系统的生产效率。
2025-05-27 15:29:09
910
【清华大学】第五弹 DeepSeek 与AI幻觉.pdf
2025-02-27
【清华大学】第一弹 DeepSeek 从入门到精通.pdf
2025-02-27
【清华大学】第二弹 DeepSeek 赋能职场.pdf
2025-02-27
【清华大学】第四弹 DeepSeek+DeepResearch:让科研像聊天一样简单.pdf
2025-02-27
北京大学第二弹 DeepSeek系列-提示词工程和落地场景
2025-02-27
北京大学第一弹 DeepSeek系列-DeepSeek与AIGC应用
2025-02-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人