分享一份《数据治理大数据平台解决方案》希望对你有帮助。
内容较长,防止后续找不到,建议先收藏!
1、数据管理一体化工作平台
整体思路:数据融合、数据治理、开放共享、数据唤醒
建设目标:聚合数据、统一治理、开放服务、智能应用
建设原则:标准先行、融合提升、开放创新、循序渐进
整体架构:一套标准、一个仓库、三个中心,构建一个系统
一套标准:基础数据标准、数据集成标准、数据模型规范、数据治理规范、数据服务规范等5大类26个标准规范
数仓技术架构:“分布式数据仓库+传统数据仓库”相结合的融合架构
数仓逻辑架构:数据同构层、数据加工层、数据集市层
数据治理:数据质量、数据安全、数据运维、元数据(数据资产)
应用创新:用户画像、数据挖掘、基因图谱、自助查询
技术引擎:Hive、Spark Streaming、MPP、Spark+MLlib
建设成果:数据资源平台、数据管理平台、数据服务平台、数据分析工具
三位一体:大数据平台、数据云平台、决策支持系统
数据中台:大数据仓库、数据治理中心、数据应用中心、数据服务中心
建设原则:开放性、统一性、扩展性、安全性、维护性
建设策略:夯实基础、丰富应用、加强管控、加强创新
总体架构:数据中台+业务中台、数据治理中心+数据服务中心+数据应用中心
应用架构
数据架构
技术架构
数据治理中心:“5化9管理”,数据标准规范化、数据采集全面化、数据管理流程化、数据资产可视化、数据质量度量化
数据治理中心:数据标准、数据采集、数据加工、数据存储、数据知识、数据质量、数据安全、数据运维、元数据
数据资产:目录、检索、报告、分析等,数据资产价值最大化
元数据管理:数据地图、血缘关系、影响分析
数据质量:完整性、准确性、一致性、及时性,全生命周期闭环管理,保障数据质量持续提升
知识管理:建设数据管理知识库,方法与经验沉淀共享
数据服务中心:数据加工服务、数据分发服务、数据共享服务、数据提供服务
本文来自公众号:BAT大数据架构
更多数据治理相关文章:数据治理博客园 | 巨人肩膀