如何建设一个数据治理大数据平台解决方案​?

分享一份《数据治理大数据平台解决方案》希望对你有帮助。

内容较长,防止后续找不到,建议先收藏!

1、数据管理一体化工作平台

整体思路:数据融合、数据治理、开放共享、数据唤醒

图片

建设目标:聚合数据、统一治理、开放服务、智能应用

图片

建设原则:标准先行、融合提升、开放创新、循序渐进

图片

整体架构:一套标准、一个仓库、三个中心,构建一个系统

图片

一套标准:基础数据标准、数据集成标准、数据模型规范、数据治理规范、数据服务规范等5大类26个标准规范

图片

数仓技术架构:“分布式数据仓库+传统数据仓库”相结合的融合架构

图片

数仓逻辑架构:数据同构层、数据加工层、数据集市层

图片

数据治理:数据质量、数据安全、数据运维、元数据(数据资产)

图片

应用创新:用户画像、数据挖掘、基因图谱、自助查询

图片

技术引擎:Hive、Spark Streaming、MPP、Spark+MLlib

图片

建设成果:数据资源平台、数据管理平台、数据服务平台、数据分析工具

图片

三位一体:大数据平台、数据云平台、决策支持系统

图片

数据中台:大数据仓库、数据治理中心、数据应用中心、数据服务中心

图片

建设原则:开放性、统一性、扩展性、安全性、维护性

图片

建设策略:夯实基础、丰富应用、加强管控、加强创新

图片

总体架构:数据中台+业务中台、数据治理中心+数据服务中心+数据应用中心

图片

应用架构

图片

数据架构

图片

技术架构

图片

数据治理中心:“5化9管理”,数据标准规范化、数据采集全面化、数据管理流程化、数据资产可视化、数据质量度量化

数据治理中心:数据标准、数据采集、数据加工、数据存储、数据知识、数据质量、数据安全、数据运维、元数据

图片

数据资产:目录、检索、报告、分析等,数据资产价值最大化

图片

元数据管理:数据地图、血缘关系、影响分析

图片

数据质量:完整性、准确性、一致性、及时性,全生命周期闭环管理,保障数据质量持续提升

图片

知识管理:建设数据管理知识库,方法与经验沉淀共享

图片

数据服务中心:数据加工服务、数据分发服务、数据共享服务、数据提供服务

图片

本文来自公众号:BAT大数据架构

更多数据治理相关文章:数据治理博客园 | 巨人肩膀 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值