Pandas笔记

pandas 最基本的功能

读取数据

data = pd.read_csv( my_file.csv )
data = pd.read_csv( my_file.csv , sep= ; , encoding= latin-1 , nrows=1000, skiprows=[2,5])
sep 代表的是分隔符。如果使用法语数据,excel 中 csv 分隔符是「;」,因此需要显式地指定它。编码设置为 latin-1 来读取法语字符。nrows=1000 表示读取前 1000 行数据。e 表示在读取文件的时候会移除第 2 行和第 5 行。

•最常用的功能:read_csv, read_excel

•其他一些很棒的功能:read_clipboard, read_sql

写数据

data.to_csv( my_new_file.csv , index=None)
index=None 表示将会以数据本来的样子写入。如果没有写 index=None,会多出一个第一列,内容是 1,2,3,...,一直到最后一行。
通常不会去使用其他的函数,像.to_excel, .to_json, .to_pickle 等等,因为.to_csv 就能很好地完成工作,并且 csv 是最常用的表格保存方式。

检查数据

Gives (#rows, #columns)
给出行数和列数
data.describe()
计算基本的统计数据

查看数据

data.head(3)
打印出数据的前 3 行。与之类似,.tail() 对应的是数据的最后一行。
data.loc[8]
打印出第八行
data.loc[8, column_1 ]
打印第八行名为「column_1」的列
data.loc[range(4,6)]
第四到第六行(左闭右开)的数据子集

pandas 的基本函数

逻辑运算

data[data[ column_1 ]== french ]
data[(data[ column_1 ]== french ) & (data[ year_born ]==1990)]
data[(data[ column_1 ]== french ) & (data[ year_born ]==1990) & ~(data[ city ]== London )]
通过逻辑运算来取数据子集。要使用 & (AND)、 ~ (NOT) 和 | (OR),必须在逻辑运算前后加上「and」。
data[data[ column_1 ].isin([ french ,  english ])]
除了可以在同一列使用多个 OR,还可以使用.isin() 函数。

基本绘图

matplotlib 包使得这项功能成为可能。它可以直接在 pandas 中使用。

data[ column_numerical ].plot()

image.png

.plot() 输出的示例

data[ column_numerical ].hist()

画出数据分布(直方图)

image.png

.hist() 输出的示例

%matplotlib inline
如果在使用 Jupyter,不要忘记在画图之前加上以上代码。

更新数据

data.loc[8,  column_1 ] =  english
将第八行名为 column_1 的列替换为「english」
data.loc[data[ column_1 ]== french ,  column_1 ] =  French
在一行代码中改变多列的值
好现在可以做一些在 excel 中可以轻松访问的事情了。

中级函数

统计出现的次数

data[ column_1 ].value_counts()

在所有的行、列或者全数据上进行操作

data[ column_1 ].map(len)
len() 函数被应用在了「column_1」列中的每一个元素上
.map() 运算给一列中的每一个元素应用一个函数
data[ column_1 ].map(len).map(lambda x: x/100).plot()
pandas 的一个很好的功能就是链式方法(https://tomaugspurger.github.io/method-chaining)。它可以在一行中更加简单、高效地执行多个操作(.map() 和.plot())。
data.apply(sum)
.apply() 会给一个列应用一个函数。
.applymap() 会给表 (DataFrame) 中的所有单元应用一个函数。

tqdm-唯一的

在处理大规模数据集时,pandas 会花费一些时间来进行.map()、.apply()、.applymap() 等操作。tqdm 是一个可以用来帮助预测这些操作的执行何时完成的包

from tqdm import tqdm_notebook
tqdm_notebook().pandas()
用 pandas 设置 tqdm
data[ column_1 ].progress_map(lambda x: x.count( e ))
用 .progress_map() 代替.map()、.apply() 和.applymap() 也是类似的。

在 Jupyter 中使用 tqdm 和 pandas 得到的进度条

相关性和散射矩阵

data.corr()
data.corr().applymap(lambda x: int(x*100)/100)

column_1column_2column_3
column_110,780,67
column_20,7810,93
column_30,670,931 .corr() 会给出相关性矩阵
pd.plotting.scatter_matrix(data, figsize=(12,8))

image.png

散点矩阵的例子。它在同一幅图中画出了两列的所有组合。

pandas 中的高级操作

The SQL 关联

在 pandas 中实现关联是非常非常简单的

data.merge(other_data, on=[ column_1 ,  column_2 ,  column_3 ])
关联三列只需要一行代码

分组

一开始并不是那么简单,首先需要掌握语法,然后会发现一直在使用这个功能。

data.groupby( column_1 )[ column_2 ].apply(sum).reset_index()

按一个列分组,选择另一个列来执行一个函数。.reset_index() 会将数据重构成一个表。

image.png

正如前面解释过的,为了优化代码,在一行中将函数连接起来。

行迭代

dictionary = {}
for i,row in data.iterrows():
 dictionary[row[ column_1 ]] = row[ column_2 ]
 .iterrows() 使用两个变量一起循环:行索引和行的数据 (上面的 i 和 row)
 总而言之,pandas 是 python 成为出色的编程语言的原因之一
 pandas 有以下优点:

•易用,将所有复杂、抽象的计算都隐藏在背后了;

•直观;

•快速,即使不是最快的也是非常快的。

•它有助于数据科学家快速读取和理解数据,提高其工作效率

更多数据分分析相关文章、专栏请访问:数据分析社区 | 巨人肩膀

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值