数据分析师转行最全攻略

一 .先说市面上的数据分析师分类

image.png

现在数据分析师其实很杂,不同企业对数据分析师有不同的定位,但大概总结一 下的话 ,是可以分为两种:

•偏技术型数据分析师

•偏业务性数据分析师

技术型分析师更接近于数据挖掘工程师、算法工程师、大数据工程师这种概念, 一般来说是需要比较好的数据结构知识和算法知识 ,对于非计算机专业的同学, 转型会有一定难度。

第二种就是偏业务型的数据分析师,也是市面上岗位最多的数据分析师,这种分 析师的门槛会相对比较低一点,但做不好的话,很有可能就变成报表分析师,提数分析师。不过毕竟门槛还是比较低的,对于想转型的同学,业务型数据分析师 会更加友好一些。

二 .再说转行数据分析师可行性

转行不转职 ,转职不转行。这句话是老生常谈了。现在 AI 行业兴起 ,新的机会 层出不穷,碰到不感兴趣的岗位,多待一天都煎熬,碰到想尝试的职位 ,内心也 蠢蠢欲动。

网上包括我之前的同事 ,都有问过我 ,如果转行数据分析 ,可不可以。

我的回答都是 ,可以。

不说虚的,我个人从业多年,觉得数据分析真的是很有用,而且也很看好这个职 位的前景。但是不同的人,面临的情况不一样。一个码了一年的计算机专业出身 的程序员 ,和一个干了三年的行政 ,他们两个转行数据分析的难度是不一样的。

没有技术背景的,建议转行从事偏业务方向的数据分析师,有技术背景可以尝试 冲刺偏技术方向的数据分析师 ,另外工资也要高一些

三 .转行数据分析师需要学什么

先说数据分析师的三板斧: Excel ,SQL , Python

Excel、SQL、python 是数据分析师必知必会的 3 个基本工具,下面我们一个个 来看:

Excel

对于 Excel 的学习,如果你的意向的岗位不是那种纯 excel 的数据分析师岗位的 话 ,建议大家不需要花费太多时间在 excel 上 ,但是主要的内容还是要掌握的, 像 v lookup、透视表和一些常用图表 ,还有一些常用的函数 ,一定要掌握清楚。

SQL

核心!sql 一定要熟 ,笔试基本必考 ,面试时候大概率让你手撕 sql ,写不出的 话很容易凉凉。完全没有基础的同学可以先了解 sql 的一些基本知识,增改删查, 主要看查询的部分。

Python

相对上面两个工具, python 的学习难度会稍微大一些。 python 能干很多事 , 对于数据分析师来说,主要应掌握基础语法和数据科学的模块,主要包括 pandas numpy 和机器学习库 sklearn 等,有同学可能会问业务型数据分析师也需要会 算法吗?答案是虽然不是必须项,但是加分项,尤其是在从零转型情况下,是增 加自己份量的一个筹码。

再说说数分的其它模块:统计学 ,机器学习 ,数分思维

统计学

如果不是统计学专业的同学,一般面试官心里都有数,不会问你很难的问题,基 本属于大学统计学范畴。对于统计学基础不怎么好,或者已经忘干净的同学,系 统性补一些基础知识就可以了。 如果说没有时间学太多内容,应该重点掌握哪 块知识呢?假设检验,假设检验,假设检验,重要的事情说 3 遍,假设检验绝对 是面试中统计学最高频的问题 ,和以后的工作也会最息息相关( a/b test)。

机器学习

机器学习相关的知识学习成本会比较高,对某些同学来说可能会有一定难度,但 对于业务型数据分析师来说,一般不会要求你去推导算法公式,能做到明白不同 算法的适用场景、优缺点、原理大概懂就基本可以了。

数据分析思维

分析思维是数据分析师最最核心的竞争力,上面所学习的 python、sql、机器学 习知识等都是在工具层面,要想使用好他们,还需要分析思维的驾驭。在面试中, 对分析思维的考察也是相当重要的一环。

数据分析项目实战

如果你已经学完了上面所有内容的话,就可以进入实战阶段了,求职和转行,一 定要做项目,这个很重要,很重要,因为做项目既可以巩固学到的知识同时又可 以解决简历中没有相关项目的问题。

下面推荐几个常见的数据科学比赛平台:

1. Kaggle

首推 ,强烈推荐! kaggle 的优势不仅在于比赛众多 ,更重要的是里面会有很多 选手分享他们的思路和代码 ,是分享做的最好的一个平台

2. 阿里天池

国内最有牌面的数据比赛平台,如果你能在阿里天池拿一个不错的名次,含金量 就相当高了,但是难度很大,对于转型的同学基本不太可能,可以看看新人赛和 一些分享之类的。

3.DataFountain

某数据比赛平台 ,难度相对天池会低一些 ,且比赛内容对于国内 hr 来说 ,可能 会更熟悉一些

四 .数据分析师求职与面试

数据分析师实际情况就是 ,面试造航母 ,上班造螺丝!

1. 逃不掉的自我介绍

首先,面试的开头就是自我介绍。通常面试官也会根据你的自我介绍来展开问后 面的问题。比如你在自我介绍种说了一个项目 ,那面试官就问这个项目的细节, 比如你用了什么技术,如何实现某个功能的等等。通过项目的细节来考察你某个 方面的能力 ,因此, 自我介绍非常重要。

如果你实在不知道如何准备自我介绍 ,可以按下面模板准备:

1)我是谁:一句话说清楚你哪年在哪里获得什么学位。

2)我做过什么:按时间顺序讲下你认为做过的最好的 1 个或者 2 个项目。

简单说下用了什么技术,最后的成果是什么。最好能有些量化的指标,比如达到 了怎样的效果等等。

2. 考察技术能力的问题

虽然各个数据分析师要做的事情不同,但是数据分析师最重要的 3 个能力却是通 用的。面试过程一般会根据这 3 个能力来提问:

1)数据分析工具

2)理论知识

3)业务逻辑

下面分别谈下这 3 个能力要掌握哪些知识。

1. 工具

常用的数据分析工具有 Excel +SQL+Python/R ,有的公司要求会一种就可以, 有的要求都会 ,所以根据你应聘职位的不同自由选择学习就可以。

1) Excel

需要掌握的核心技能有:

常用函数的使用 ,基础图表的制作 ,数据透视表 ,v lookup

2)SQL

公司的内部数据存储在数据库中,作为数据分析师要能够从数据库中获取数据并 进行分析。

需要掌握的核心技能有:

会利用 SQL 操作开源数据库 mysql 进行增加、删除、查询、修改

存储过程

数据库的分组、聚合、排序

最常见的考 SQL 的方法给你一个虚拟的数据库表结构 ,然后让你按给出的条件 查询出数据,并用手写的形式写出在纸上。所以面试前把常用的语句记清楚就行 了。 可以买一本《 SQL 必知必会》放在手边 ,随时翻看。

3)编程语言 Python 或者 R

一般情况下,这两种语言会一种就够了。如果是学习 Python 的话,需要掌握的 核心技能:

Python 基本语法、基本数据类型、常用的数据结构、条件和循环、函数、模块 Python 数据分析的包( numpy, pandas, matplotlib)

能够用 python 操作结构化数据 ,进行数据清洗 ,数据抽取 ,数据可视化等 使用 python 操作数据库

一般不会在代码上问得太细,毕竟写工作的时候不会的就用搜索引擎搜呗,面试 官重要的想知道你究竟有没有用过这个技能。

3. 理论知识

1)统计概率

这是数据分析必须要学的,不然很多统计指标看不懂,统计方法也不了解,怎么 做数据分析呢?

需要掌握的核心技能有:

描述性统计(平均值 ,标准差 ,中位数)

概率(独立事件 ,相关事件 ,期望 ,包括贝叶斯)

概率分布(离散概率分布 ,连续概率分布)

统计推断(抽样 ,置信区间 ,假设检验)

例如面试官可能会这样问:置信区间 ( Confidence Interval) 是更怕 I 型错误 还是 II 型错误?如果还不会 ,可以在我在知乎 live 的统计概率思维系列课程即 可。

2)机器学习(加分项)

机器学习这一块其实应该算是数据分析岗位的加分项,不一定是必须的,要看具 体岗位。

需要掌握的机器学习算法:

分类算法:逻辑回归 ,贝叶斯、决策树、随机森林

回归算法:线性回归

聚类算法: K-means

需要掌握的核心技能:

特征工程

模型评价

交叉检验(用已有的数据监测算法的预测力)

4. 业务逻辑

主要包括业务指标和数据分析报告 2 块内容的掌握。

1)业务指标

数据分析师每天要关注大量数据指标,而数据指标又与具体的领域业务相关,掌 握常用的数据指标可以灵活应对面试中提出的业务问题。

比如面对新的数据需求,能否将它拆分成具体的指标进行计算? 各个指标如何衡 量 ,比如 app 的转换率 ,是点击算转化还是注册了算转化还是购买产品后算转 化?

需要掌握的核心技能:

某一领域的知识概要(只需要大致了解)

数据分析思维:漏斗思维 ,分类思维 ,平衡思维 ,A/B test 等

相关性和因果关系的区别, 通过案例可以分析出来

2)如何做数据分析报告?

数据分析的最终产出是一份份报告 ,可能是 PPT ,也可能是 PDF 等 ,或者使用 python 的 notebook 来生成。

上面每个技能的熟练程度划分为 5 个等级 ,依次分别是:

了解基本概念

了解基本概念/会简单操作

熟悉基本概念/熟练操作

精通逻辑论证/能改进优化

对于找数据分析师实习或者初级数据分析师的工作来说,上面这几个知识大多只 需要掌握到第 2 个等级就可以了。

5. 面试结束时的问题

问完上面的技术问题,到了面试快结束的环节,面试官通常会问:你有什么问公 司的?

这时候绝对不要问工资、五险一金和年假制度(这种是面试通过后,到了 HR 阶 段有的是机会私下问 HR)。你可以提前准备这样几个问题 ,比如:

我会和谁一起工作?

如果我遇到问题 ,我可以通过哪些方式获得指导?

公司希望我在三个月左右能达到什么水平?

在我以前 ,公司里最优秀的新人是什么样的?

        

数据分析社区推荐,免费数据分析资料下载。定期分享数据分析领域的最新动态、实战案例、技术工具评测、数据可视化技巧以及行业洞察报告。

专栏

博客

资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值