Top-1 Error & Top-5 Error

本文深入解析了机器学习模型评估指标中Top-1错误率和Top-5错误率的概念,阐述了这两种错误率如何衡量模型性能,以及它们在实际应用中的意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Top-1 Error:假设模型预测某个对象的类别,模型输出1个预测结果,那么这一个结果能判断正确的概率就是Top-1正确率。判断错误的概率就是Top-1错误率。简言之就是模型判错的概率。
Top-5 Error :假设模型预测某个对象的类别,模型输出5个预测结果,只要其中一个能判断正确类别,这个概率就是Top-5正确率,反之,预测输出的五个结果都错误的概率就是Top-5错误率。
一般来说,Top-1 Error和Top-5 Error越低,模型的性能也就越好。且Top-5 Error 往往小于Top-1 Error。
### Top-5 错误率概念 Top-5 错误率是指对于给定的数据样本,如果模型预测的概率最高的前五个类别中都不包含真实标签,则认为该样本被错误分类。换句话说,只要模型给出的前五个可能性中有任何一个正确识别了实际类别,就视为成功;反之则计入错误。 具体来说,在图像分类任务中,当对一张图片进行多类别的预测时,即使最高置信度的选择不准确,但如果真实的对象类型位于按概率排序后的第二至第五位之间,仍然不算作完全失败[^2]。 ### 计算方法 为了计算Top-5错误率,需要遍历整个验证数据集,并统计那些其真值未出现在模型所返回的最佳猜测列表(通常长度为5)内的实例数量。最终的结果可以通过下面的比例表达: \[ \text{Top-5 Error Rate} = \frac{\text{未能进入前五名预测的数量}}{\text{总测试样例数}} * 100\% \] 举个例子,如果有100张待测照片,而其中只有95次的真实物体种类能在各自对应的排名表里找到位置(哪怕只是最后一名),那么此时top-5 error rate就是\( (100 - 95)/100*100\%=5 \%\) [^3]. ```python def calculate_top_5_error_rate(predictions, true_labels): """ Calculate the top-5 error rate. :param predictions: List of lists containing predicted probabilities or scores for each class per sample. Each inner list should be sorted from highest to lowest score and contain at least five elements. :param true_labels: List of actual labels corresponding to each prediction set. :return: The calculated top-5 error rate as a percentage. """ errors = sum(1 for pred, label in zip(predictions, true_labels) if label not in pred[:5]) total_samples = len(true_labels) return (errors / total_samples) * 100 ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值