最小生成树
prim
Prim是一种增量算法,每次选择代价最小的边加入生成树,然后根据新加的节点更新备选节点的代价。
通俗来说就是从起点开始,用贪心策略每次加入一个节点到现有的集合(这个集合连通的),直到最后所有节点都加入。
时间复杂度为o(n^2)。适合稠密图
const int INF = 0x3f3f3f3f;
const int maxn = 110;
int lowcost[maxn];
int closest[maxn];
//点从 0 到 n-1
void prim(int cost[][maxn], int n, int st) {
int MIN, k;
for(int i = 0; i < n; i++) { //以st为起点。
lowcost[i] = cost[st][i];
closest[i] = st;
}
for(int i = 1; i < n; i++) { //找出另外n-1个点
MIN = INF;
for(int j = 0; j < n; j++) { //在所有备选的点中找到代价最小的
if(lowcost[j] != 0 && lowcost[j] < MIN) {
MIN = lowcost[j];
k = j; //用k保存下一个入生成树的节点
}
}
printf("边(%d,%d)权为:%d\n", closest[k], k, MIN);
lowcost[k] = 0; //标记k已经在生成树
for(int j = 0; j < n; j++) { //更新备选节点的代价
if(lowcost[j] != 0 && cost[k][j] < lowcost[j]) {
lowcost[j] = cost[k][j];
closest[j] = k; //这时候j的上一个节点就是k
}
}
}
}
Kruskal
Kruskal按照边权值大小排序,然后从小到大选择最小边加入生成树(前提是没有回路,如果变成回路就舍弃判断下一条边),与Prim不同的是当前的图不一定连通的。
下面代码是邻接表实现的,时间复杂度是o(eloge),e是边数,所以它适合稀疏图。
const int maxm = 1e4 + 10;
int F[maxn]; // 并查集FIND[]
struct Edge {
int u, v, w;
} edge[maxm]; //存储边,起点,终点,权值
int tol; //边数
void addedge(int u, int v, int w) { //加边函数
edge[tol].u = u;
edge[tol].v = v;
edge[tol++].w = w;
}
//按照权值大小排序
bool cmp(Edge a, Edge b) {
return a.w < b.w;
}
//并查集
int find_(int x) {
return (F[x] == -1) ? x : (F[x] = find_(F[x]));
}
//false时不是连通图
bool Kruskal(int n) {
memset(F, -1, sizeof(F));
sort(edge, edge + tol, cmp); //边排序
int cnt = 0; //记录加的边数
for(int i = 0; i < tol; i++) {
int u = edge[i].u;
int v = edge[i].v;
int w = edge[i].w;
int t1 = find_(u);
int t2 = find_(v);
if(t1 != t2) { //不是回路
printf("边(%d,%d)权为:%d\n", u, v, w);
F[t1] = t2;
cnt++;
}
if(cnt == n - 1)
break;
}
return (cnt == n - 1);
}
最短路径
单源最短路Dijkstra
感觉和Prim算法思路相似,每次用贪心策略找当前最优节点k加入集合S,之后用k节点更新不在S集合的节点的最短路径长度。代码也十分相似,时间复杂度同为O(n^2)。
用到的理论是,若从源点s到顶点j的最短路径是(s…i…u,j)也就是代码中的pre[j] = u。那么(s…i…u)一定是s到u的最短路径。(反证法可以证明)
bool vis[maxn];
int pre[maxn];
int cost[maxn][maxn];
int lowcost[maxn];
void Dijkstra(int n, int st) {
for(int i = 0; i < n; i++) { //初始化
lowcost[i] = INF;
vis[i] = false;
pre[i] = -1;
}
lowcost[st] = 0; //源点dist
for(int j = 0; j < n; j++) { //这份代码一开始源点也没有在集合S中,所以要循环n次
int k = -1; //找vis[k]==false且具有最小路径长度的顶点k
int Min = INF;
for(int i = 0; i < n; i++) {
if(!vis[i] && lowcost[i] < Min) {
Min = lowcost[i];
k = i;
}
}
if(k == -1)
break;
vis[k] = true; //标记k已经进入S集合
for(int i = 0; i < n; i++) {
if(!vis[i] && lowcost[k] + cost[k][i] < lowcost[i]) { //根据新进来的k顶点修改不在S集合顶点的最小路径长度
lowcost[i] = lowcost[k] + cost[k][i];
pre[i] = k; //标记i顶点的路径的前一个顶点为k
}
}
}
}
Floyd
思想就是用矩阵序列A0,A1...Ak...AnA_0,A_1...A_k...A_nA0,A1...Ak...An,其中矩阵AkA_kAk的Ak[i][j]A_k[i][j]Ak[i][j]表示 iii到jjj的路径上所经过的顶点编号不大于kkk的最短路径长度。
假如AkA_kAk已经求出,考虑加入顶点k+1k+1k+1。此时从iii到jjj就有2种路径长度
- Ak[i][j]A_k[i][j]Ak[i][j]
- Ak[i][k+1]+Ak[k+1][j]A_k[i][k+1] + A_k[k+1][j]Ak[i][k+1]+Ak[k+1][j]
所以就用三重循环暴力,第一层就代表每次考虑用k顶点作为中间顶点。
int A[maxn][maxn], path[maxn][maxn];
void Floyd(int n) {
for(int i = 0; i < n; i++) //初始化
for(int j = 0; j < n; j++) {
A[i][j] = cost[i][j];
path[i][j] = ((cost[i][j] < INF) ? i : -1);
}
for(int i = 0; i < n; i++)
path[i][i] = -1;
for(int k = 0; k < n; k++) { //考虑每个顶点作为中间顶点
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
if(A[i][j] > A[i][k] + A[k][j]) {
A[i][j] = A[i][k] + A[k][j]; //更新
path[i][j] = path[k][j];
}
}
}
拓扑排序
循环以下2步直到不存在入度为0的顶点
- 选择一个入度为0的顶点输出
- 从网中删除此顶点以及它的所有出边
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e4 + 5;
vector<int> G[maxn];
int in[maxn],seq[maxn];
int n,m,cnt = 0;
void topology(){
for(int i = 1;i <= n;i++){
if(in[i] == 0) seq[++cnt] = i;
}
int head = 1;
while(head <= cnt){
int u = seq[head];
for(int i = 0;i < G[u].size();i++){
int v = G[u][i];
in[v]--;
if(in[v] == 0) seq[++cnt] = v;
}
head++;
}
//当cnt不等于n时,说明这图有环
}
int main(){
scanf("%d %d",&n,&m);
for(int i = 1;i <= m;i++){
int x,y;
scanf("%d %d",&x,&y);
G[x].push_back(y);
in[y]++;;
}
topology();
for(int i = 1;i <= cnt;i++) printf("%d\n",seq[i]);
}