- 博客(84)
- 收藏
- 关注
原创 使用LLMs为HugeGraph提供自然语言接口
图数据库如 HugeGraph 非常适合用来表示复杂的关系网络,比如社交网络、推荐系统等。利用 Gremlin 语言,我们可以高效地遍历和查询这些图数据。通过结合 LLMs,我们可以直接使用自然语言查询图数据,大大简化用户的交互过程。
2025-01-24 04:03:14
272
原创 SQLDatabase Toolkit: 搭建基于SQL数据库的智能问答系统
SQLDatabase Toolkit 是一个非常有用的工具集,旨在与SQL数据库进行交互。它的常见应用场景是通过数据库数据构建问答系统,特别是在需要迭代处理和错误恢复的情况下。此工具包在LangChain社区包中提供,支持多种大型语言模型(LLM)或聊天模型的集成。
2025-01-24 02:32:34
524
原创 利用DuckDB高效加载和处理CSV文件
DuckDB 是一个现代的嵌入式SQL数据库,专为分析查询优化而设计。它支持在本地环境中运行,可以方便地与Python集成,这使得其在数据科学和分析应用中尤其有用。通过使用DuckDB,我们可以在无需单独服务器的情况下高效执行SQL查询。
2025-01-23 13:16:09
607
原创 利用Airbyte平台集成Shopify数据
Airbyte是一个功能强大的数据集成平台,专注于从API、数据库和文件中提取数据并将其加载到数据仓库和数据湖中。它拥有种类丰富的连接器,支持多种异构数据源进行ELT(Extract, Load, Transform)操作。在本文中,我们将通过Shopify连接器来演示如何将Shopify订单数据作为文档加载到您的数据存储解决方案中。
2025-01-23 12:13:44
140
原创 替代 AirbyteHubspotLoader 的数据加载方式 - 使用最新推荐的 AirbyteLoader
Hubspot 是一个营销、销售和服务的综合平台,常用于客户关系管理(CRM)。通过 Airbyte,我们可以轻松地从 Hubspot 拉取结构化数据,如产品、联系人和交易记录,供后续分析使用。是新的推荐工具,它提供了一种泛化方法加载任意数据流,同时支持增量同步功能,极大地提升了数据加载的效率和灵活性。
2025-01-23 12:07:43
282
原创 使用NVIDIA NeMo Embeddings连接和应用文本嵌入服务
NREM能够优化文本嵌入模型的推理,这得益于NVIDIA的TensorRT和Triton Inference Server的支持。对于开发者来说,这意味着可以在最小化延迟的同时处理大量数据和请求,为语义相关搜索和文本分析任务提供高效的解决方案。
2025-01-23 11:48:57
295
原创 使用LocalAI Embedding类实现文本嵌入
文本嵌入是一种将文本转换成数值向量的技术,方便计算机进行处理和分析。这些数值向量在语义空间中保留了文本的意义,广泛应用于自然语言处理任务中,包括文本分类、相似度计算等。
2025-01-23 11:31:06
292
原创 利用LLMRails实现高效文本嵌入
嵌入是将文本转换为向量的过程,使得文本可以在机器学习模型中进行处理。LLMRails是一个提供高质量嵌入服务的平台,它支持多种语言,并且能够处理单个文本或文本列表。
2025-01-23 11:25:38
254
原创 使用DashScope的嵌入模型进行文本嵌入
DashScope是一款高效且易用的NLP服务提供商,它提供了多种模型用于文本嵌入、生成等常见NLP任务。使用这些嵌入服务,可以将文本数据转化为数值向量,从而为深度学习模型和其他机器学习算法的应用奠定基础。
2025-01-23 09:48:05
425
原创 如何使用AI21 Embeddings进行文本嵌入
文本嵌入是一种将文本数据转化为数值向量的技术,可以有效捕获文本的语义信息。AI21提供了强大的文本嵌入API,使开发者能够轻松地将文本嵌入应用于各种自然语言处理任务。
2025-01-23 08:47:11
225
原创 快速入门Volc Engine的MaaS LLM模型
Volc Engine(火山引擎)提供了一个强大的MaaS(Model as a Service)平台,支持多种语言模型。这个平台旨在让开发者更容易地集成和使用先进的自然语言处理能力。通过Volc Engine,开发者可以轻松实现文本生成、文本分析等功能。
2025-01-23 08:19:04
524
原创 利用 PromptLayer 管理和优化你的 OpenAI API 调用
在深入实际应用之前,先来了解下 PromptLayer 的作用。它不仅记录 API 请求,还提供强大的标签和性能评分系统。这对于开发者来说,能够更好地了解不同模型和提示模板的表现情况,从而优化 AI 应用。
2025-01-23 07:32:54
342
原创 使用Llamafile简化LLM的本地运行和调用
现代LLMs通常需要庞大的计算资源和复杂的环境配置,而Llamafile则通过封装,将这一切简化为单个可执行文件。这对于开发者和研究人员来说,是个非常高效的解决方案。
2025-01-23 06:02:52
419
原创 使用Langchain与百度Qianfan平台进行文本补全
Qianfan平台提供了三种主要模型类型:嵌入模型(Embedding)、对话模型(Chat)和补全模型(Completion)。在本次演示中,我们将主要集中在Completion模型,并结合Langchain库进行实际操作。Langchain是一个强大的库,用于简化与语言模型的交互,特别是在使用像Qianfan这种复杂的平台时。
2025-01-23 03:30:20
701
原创 使用Baichuan LLM构建高效的自然语言处理应用
Baichuan LLM 是由Baichuan Inc. 开发的一款强大的语言模型,旨在满足基础的人类需求:效率、健康和幸福。在这个用于通用人工智能的时代,Baichuan LLM为开发者提供了一个强大且灵活的自然语言处理平台,通过简单的接口调用使得AI集成变得更加容易。本文将重点介绍如何在Python环境中安装和使用Baichuan LLM。
2025-01-23 03:24:49
419
原创 使用SolarChat实现中英韩翻译的实战指南
随着人工智能的发展,语言模型在各种自然语言处理任务中扮演了重要角色。特别是在翻译、对话生成等领域,先进的语言模型如SolarChat为我们提供了便利的解决方案。SolarChat通过简单的API调用实现复杂的翻译功能,使得开发者可以轻松地将语言处理功能嵌入到他们的应用程序中。
2025-01-23 02:26:58
690
原创 利用 Hugging Face 模型进行文本嵌入推理
文本嵌入是自然语言处理(NLP)中的一种重要技术。它将文本转换为固定长度的向量,这些向量在下游任务如分类、聚类或相似度计算中非常有用。Hugging Face 的 Text Embeddings Inference (TEI) 提供了一套工具,可高效地部署和服务开源文本嵌入和序列分类模型,如 FlagEmbedding、Ember、GTE 和 E5。
2025-01-22 23:25:37
488
原创 使用YouTube Searchpackage实现YouTube视频搜索
在开发过程中,搜索YouTube视频是一项常见需求,但YouTube官方API的请求频率限制让开发者们头疼不已。为了解决这一问题,我们可以使用YouTube Searchpackage,这个包通过爬取YouTube主页表单来实现视频搜索,从而绕过官方API的频率限制。本文将介绍如何使用YouTube Searchpackage工具进行YouTube视频搜索,并展示代码实现。
2025-01-22 23:18:43
393
原创 使用 Google Cloud Firestore (Datastore 模式) 存储聊天消息历史
Google Cloud Firestore(Datastore 模式)是一种无服务器的文档导向数据库,能够根据需求进行扩展。通过将数据库应用程序扩展到 Datastore 的 Langchain 集成,可以构建 AI 驱动的体验。本篇文章将展示如何使用 Google Cloud Firestore(Datastore 模式)与 DatastoreChatMessageHistory 类来存储聊天消息历史。# 自定义客户端配置。
2025-01-22 23:05:49
296
原创 使用Google Generative AI Models与Langchain结合:完整指南
Google的生成式AI模型一直以来在NLP(自然语言处理)领域中占据重要地位。通过Langchain库的支持,我们能够更加方便地调用这些模型,实现文本生成、联想补全等功能。需要注意的是,本文档专注于Google Generative AI模型的应用,而非Google Cloud Vertex AI整合。
2025-01-22 22:09:07
427
原创 使用Prediction Guard在LangChain中的生态系统
Prediction Guard是一种强大的工具,可以帮助开发者在LangChain之类的框架中增强和保护语言生成模型(LLM)的输出。它提供了对模型输出的控制能力,例如通过控制输出类型(如布尔值、分类等)来满足不同的应用需求。本文将带您了解如何在LangChain中安装和使用Prediction Guard。
2025-01-22 17:20:28
335
原创 使用MLflow管理LangChain实验的全生命周期
实验追踪:记录和存储LangChain实验的模型、代码、提示、指标等。依赖管理:自动记录模型依赖,确保开发和生产环境的一致性。模型评估:为LangChain应用提供本地化评估功能。数据流追踪:在LangChain链中对数据流进行可视化追踪(2.14.0版本及以上支持)。])
2025-01-22 15:22:15
256
原创 使用LangChain集成ForefrontAI生态系统的实用指南
ForefrontAI是一个强大的人工智能生态系统,提供多种语言模型服务。通过LangChain,您可以轻松集成和使用ForefrontAI的能力,构建具有强大自然语言处理功能的应用。
2025-01-22 10:20:50
287
原创 利用CTranslate2优化Transformer模型的推理性能
Transformer模型自从引入后,在许多任务上取得了显著的成功。然而,随着模型规模的扩大,推理速度和资源消耗成为瓶颈。CTranslate2旨在通过一系列优化技术改善这一状况,使得Transformer模型能够在有限的硬件资源下有效运行。
2025-01-22 07:34:37
395
原创 使用Bittensor构建去中心化的机器学习网络
Bittensor是一个开源协议,旨在构建一个去中心化的、基于区块链的机器学习网络。它通过分布式节点的协作来训练和服务于机器学习模型,实现了去中心化的AI市场。这种结构不仅保证了数据的隐私性和安全性,还能激励参与者通过高效的模型贡献获得收益。
2025-01-22 05:39:06
239
原创 利用AwaDB实现高效嵌入向量存储与搜索
在构建大型语言模型(LLM)应用程序时,嵌入向量的存储和检索是一个不可忽视的关键环节。AwaDB 是一种专为 AI 应用而设计的数据库,它使嵌入向量的检索和存储更加高效和便捷。本文将带你了解如何使用 AwaDB 来管理这些嵌入向量。
2025-01-22 04:38:47
274
原创 在本地运行开源大语言模型的实践:使用Ollama与LangChain Ollama集成
大语言模型近年来取得了显著的发展,然而,由于模型体积和复杂性,部署和运行这些模型通常需要强大的计算资源和复杂的配置。Ollama通过将模型权重、配置和数据打包在一起,简化了这一过程,让开发者能够在本地更轻松地运行这些模型。
2025-01-22 00:53:15
358
原创 利用RAG Fusion提升搜索结果排序的实战指南
在现代信息检索系统中,如何有效地检索到用户所需的信息是一个重要的挑战。RAG Fusion(Retrieval-Augmented Generation)是一种结合生成与检索的技术,能够通过多查询生成与互惠评分融合(Reciprocal Rank Fusion, RRF)来重新排序搜索结果,从而提高搜索的准确性和相关性。本文将带你深入理解RAG Fusion的原理,并通过详细代码示例展示如何在实际项目中应用这项技术。
2025-01-21 19:22:55
360
原创 使用 OpenAI Functions Agent 和 LangChain 实现 Gmail 智能助手
本指南介绍如何利用OpenAI的功能调用支持、LangChain框架以及Tavily搜索引擎来创建一个智能的Gmail助手。通过合理的集成,这个助手可以根据邮件内容自动撰写和回复邮件,从而提升工作效率。scopes=["https://mail.google.com/"], # 可更改为所需权限范围。
2025-01-21 17:13:16
411
原创 使用LangChain和CSV Agent构建智能交互式数据分析应用
LangChain是一个用于创建多步骤链式应用程序的强大框架,它可以帮助开发者将自然语言处理和用户输入结合起来。CSV Agent是LangChain的一个特定模板,旨在通过数据代理实现对CSV文件的智能分析。
2025-01-21 15:08:54
328
原创 利用Upstage的AI技术提升自然语言处理应用
Upstage的Solar Mini Chat是一款快速高效的大规模语言模型,专注于英语和韩语。它经过特别的多轮对话调优,在理解长对话、复杂文本等方面表现出色,尤其适合用于交互式应用。此外,Upstage还提供如真实世界的RAG、模型响应的Groundedness Check与文档的Layout Analysis等功能,这些特性使得Solar更能适应各种实际应用场景。
2025-01-21 13:15:25
257
原创 从 LLMRouterChain 迁移到 LCEL:提升多任务选择的效率
LLMRouterChain 是一种用于将输入查询路由到多个目的地的链。其运作方式类似于通过自然语言提示选择最适合输入的目的地,并生成 JSON 格式的文本,解析出目标目的地。"""print(router_template.replace("`", "'")) # 用于渲染目的然而,由于不支持工具调用的功能,使得该链在处理更加复杂的交互时显得不足。
2025-01-21 08:08:23
447
原创 使用工具调用进行Few-shot提示的实践指南
在AI驱动的计算任务中,例如复杂的数学公式计算,我们可能希望模型能够准确地调用工具来完成每一步计算,而不是自己进行推理计算。为了提高模型的表现,我们可以使用Few-shot示例,即在提示中加入一些具体的计算过程示例。
2025-01-21 06:43:58
438
原创 使用多模态提示格式化输入的实践指南
多模态学习是指能够同时处理多种类型数据(如文本、图像、音频等)的模型。在许多AI应用中,能够集成和处理多种数据类型是一项强大的功能。例如,当我们希望AI描述一幅图像时,可以通过图像与文本相结合的方式实现。
2025-01-21 03:21:24
252
原创 使用LangChain加载Markdown文档的实战指南
Markdown 是一种轻量级标记语言,可以用纯文本编辑器创建格式化文本。在本文中,我们将介绍如何将 Markdown 文档加载到 LangChain 的Document对象中,以便在下游使用。LangChain 实现了一个对象,这需要依赖包。
2025-01-21 00:34:10
355
原创 如何调试你的大语言模型应用程序
在构建任何类型的软件时,调试是必不可少的一步。对于大语言模型(LLM)应用程序,这一需求同样重要。模型调用可能会失败,或者模型输出格式错误,或者在某些嵌套的模型调用中,错误输出的起源不明确。
2025-01-21 00:05:00
422
原创 使用HTMLSectionSplitter智能分割HTML文档
在文档处理或自然语言处理应用中,我们经常需要将长文档分解为更小的段落,以便于进一步加工或分析。传统的文本分割方法往往忽略了文档结构,导致上下文关联的文本被割裂。HTMLSectionSplitter通过识别HTML标记,尤其是标题标记,智能地进行分割,以保持语义相关性。
2025-01-20 22:05:53
651
原创 使用LangChain构建信息提取链
随着大型语言模型(LLMs)的出现,它们的生成能力被广泛应用于各种信息提取任务。通过定义结构化的提取需求,我们可以利用这些模型从复杂的文本中获取所需的信息。我们使用Pydantic来定义一个用于提取个人信息的Schema。
2025-01-20 18:00:33
625
原创 使用LangChain构建自然语言接口连接Memgraph数据库
Memgraph 提供高效的图数据查询能力,并以 Cypher 为其核心查询语言。而结合 LLM(如 OpenAI 的 GPT 系列模型)可以实现自然语言到 Cypher 查询的自动转换,让用户通过自然语言直接查询图数据。设置 Memgraph 数据库构建简单的 QA 系统使用 LangChain 优化自然语言查询。
2025-01-15 00:29:01
391
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人