ChatGPT最新发布Tasks能力,LangChain 就搞出来 Ambient Agent: 让 AI 主动工作的新范式

1月15日,OpenAI 推出了一项名为Tasks 的测试版新功能,主要面向Plus、Pro和 Teams 用户开放。Tasks 旨在为 ChatGPT 提供自动化的任务处理能力,用户可以设置一次性提醒或重复性任务,让 ChatGPT 帮助完成各种任务。有人认为,Tasks 标志着 ChatGPT 从被动对话的 Agent进化为能够主动管理和执行计划任务的助手,是 OpenAI 进军 AI智能体(AI Agent)的第一步。

ChatGPT 刚刚宣布支持 Tasks 能力,LangChain 就搞出来了可用开源版本!

1. 引言

在 AI 快速发展的今天,我们已经习惯了通过聊天界面与 AI 助手进行交互。无论是处理邮件、编写代码,还是进行创意写作,这种交互模式已经成为我们日常工作的一部分。然而,随着应用场景的不断拓展,传统的聊天式交互开始显露出其局限性。

最明显的问题是效率瓶颈:每次需要 AI 协助时,我们都必须主动打开对话窗口,输入指令,等待响应。这种方式不仅打断了工作流程,还限制了我们同时处理多个任务的能力。想象一下,如果你有一位人类助理,你会希望每次需要帮助时都要敲门进入他的办公室吗?显然不会。这就是为什么我们需要一种新的交互范式,而 Langchain 团队提出的 Ambient Agent 正是对这一问题的创新性解答(点击阅读原文进入 Langchain 文章)

2. 什么是 Ambient Agent?

2.1 核心特征

Ambient Agent 代表了一种全新的 AI 助手范式,其本质是一个能够在环境中持续存在并主动工作的 AI Agent。与传统的被动响应式 AI 不同,Ambient Agent 具有自主性、持续性和环境感知能力。

这种 Agent 系统最显著的特征是其主动性。它不需要等待用户的明确指令就能开始工作,而是通过持续监控环境中的各种信号来主动发现和处理任务。比如,它能够自动监控你的邮箱,识别重要邮件,并在适当的时候提醒你或者采取行动。

更重要的是,Ambient Agent 可以同时处理多个任务。这种并行处理能力极大地提升了工作效率,让 AI 助手更接近于真实助理的工作方式。它不再被限制在单一的对话窗口中,而是可以在后台同时推进多个工作流程。

2.2 与传统聊天机器人的对比

传统的聊天机器人采用一问一答的交互模式,这种模式简单直接,但也带来了诸多限制。首先,它要求用户在每次需要帮助时都必须主动发起对话,这增加了交互成本。其次,聊天形式的交互通常是同步的,用户需要等待 AI 的响应才能继续下一步操作,这在处理复杂任务时特别耗时。

相比之下,Ambient Agent 采用了异步的工作模式。它能够在后台持续运行,主动监控和处理各种任务,只在真正需要用户参与时才会发出通知。这种方式不仅减少了用户的操作负担,还提高了整体的工作效率。

3. Ambient Agent 的工作原理

3.1 后台监控机制

Ambient Agent 的核心是其强大的事件流监听系统。这个系统能够持续捕捉环境中的各种信号,包括但不限于新邮件的到达、日程变更、系统通知等。通过对这些信号的实时分析,Agent 能够及时发现需要处理的任务。

在信号处理方面,Ambient Agent 采用了复杂的优先级管理机制。它不会对每个信号都立即作出响应,而是会根据预设的规则和上下文来评估任务的重要性和紧急程度,从而决定是否需要立即处理或通知用户。

3.2 人机协作模式

Ambient Agent 设计了三种主要的人机协作模式,分别应对不同的场景需求:

1. Notify(通知)模式用于重要事件的提醒。当 Agent 发现需要用户注意的情况时,会通过合适的方式发出通知。这种通知不同于传统的机械提醒,而是经过智能筛选和整合的,确保不会打扰到用户的注意力。

2. Question(询问)模式在 Agent 需要额外信息才能继续工作时触发。例如,当收到会议邀请时,Agent 会询问用户的参与意向,然后根据答复来安排后续工作。这种交互方式保持了决策的灵活性,同时避免了过度自动化可能带来的问题。

3. Review(审核)模式则用于需要用户确认的重要操作。当 Agent 制定了行动方案后,会将方案提交给用户审核,用户可以选择接受、修改或拒绝。这种机制既保证了操作的安全性,也为 Agent 提供了学习和改进的机会。

3.3 决策机制

在决策方面,Ambient Agent 采用了分层的决策机制。对于日常性、低风险的任务,Agent 可以直接处理;对于需要判断或可能产生重要影响的决策,则会寻求用户的参与。这种机制确保了自动化和人工干预之间的平衡。

4. 实际应用案例

4.1 邮件助理

邮件助理是 Ambient Agent 最典型的应用场景之一。它能够自动分类收到的邮件,识别重要程度,并根据预设的规则采取相应行动。对于常规性的邮件,它可以直接起草回复供用户审核;对于需要特殊处理的邮件,它会及时提醒用户并提供必要的上下文信息。

更重要的是,邮件助理能够与日程管理系统集成,自动处理会议邀请、协调时间安排,甚至主动提醒用户可能存在的日程冲突。这种全方位的协助大大减轻了用户的日常工作负担。

4.2 开发助手

在软件开发领域,像 Devin 这样的 Ambient Agent 展现出了强大的潜力。它能够持续监控代码仓库的变化,自动进行代码审查,发现潜在的问题。当遇到需要开发者注意的情况时,它会主动发出提醒,并提供详细的问题描述和可能的解决方案。

在持续集成过程中,开发助手可以自动运行测试,分析测试结果,并在发现异常时立即通知相关开发者。这种持续的监控和即时反馈机制大大提高了开发团队的工作效率。

5. 人类角色的转变

5.1 从"人在回路中"到"人在回路上"

Ambient Agent 的出现带来了人机协作方式的根本性转变。传统的"人在回路中"(Human-in-the-loop)模式要求人类参与每个决策环节,而新的"人在回路上"(Human-on-the-loop)模式则让人类转向监督者的角色。

这种转变并不意味着人类失去了控制权,相反,它提供了更高效的控制方式。用户可以随时查看 Agent 的工作记录,了解决策过程,并在需要时进行干预。这种透明性和可控性是建立信任的关键基础。

5.2 新型交互界面

为了支持这种新的工作模式,产生了 Agent Inbox 等创新性的交互界面。这种界面集中展示了所有需要人类注意的事项,并按优先级进行组织。用户可以在这里查看 Agent 的工作进展,提供必要的输入,审核关键决策。

这种集中式的管理界面不仅提高了工作效率,还为用户提供了更好的可见性和控制力。通过精心设计的反馈机制,用户可以持续调整 Agent 的行为,使其更好地适应特定的工作需求。

6. 技术实现

6.1 核心组件

Ambient Agent 的技术实现依赖于多个关键组件的协同工作。事件监听系统负责捕捉和分发各种环境信号;状态管理系统维护任务的执行状态和上下文信息;持久化存储则确保了数据的可靠性和连续性。

这些组件需要高度的可靠性和可扩展性,因为它们要支持 Agent 的持续运行和多任务处理能力。同时,它们还需要具备良好的容错能力,确保在出现异常情况时能够妥善处理。

6.2 关键技术

在技术栈方面,像 LangGraph 这样的框架提供了构建 Ambient Agent 所需的基础设施。它支持状态的检查点保存、人机交互的集成,以及长期记忆机制的实现。

长期记忆机制特别重要,因为它使得 Agent 能够从过去的交互中学习,不断改善其决策能力。通过适当的记忆管理,Agent 可以逐步建立起对用户偏好和工作模式的理解。

7. 未来展望

7.1 发展趋势

Ambient Agent 的发展方向呈现出几个明显的趋势:

首先是个性化水平的提升,Agent 将能够更好地理解和适应每个用户的独特需求和工作习惯。

其次是多 Agent 协作的增强,不同的专业化 Agent 将能够协同工作,处理更复杂的任务。

应用场景也在不断扩展,从个人助理到团队协作,从简单的任务处理到复杂的决策支持,Ambient Agent 的潜力正在被不断挖掘。

7.2 潜在挑战

当然,这种新型的交互范式也面临着诸多挑战。

隐私安全是首要考虑的问题。因为 Ambient Agent 需要访问大量的个人和组织数据。如何在提供服务的同时保护用户隐私,需要更严谨的技术和政策设计。

建立信任是另一个关键挑战。用户需要时间来适应这种新的工作方式,而 Agent 也需要通过持续的良好表现来赢得用户的信任。交互设计的优化也是一个持续的课题,需要在自动化和人工干预之间找到最佳平衡点。

8. 结论

Ambient Agent 代表了人机交互的一次重要革新。它突破了传统聊天式交互的局限,提供了一种更自然、更高效的协作方式。通过持续的后台运行和智能的干预机制,它既提高了工作效率,又保持了必要的人工控制。

这种新的范式必将对未来的工作方式产生深远影响。随着技术的不断进步和应用场景的拓展,Ambient Agent 将成为我们工作中不可或缺的智能助手。但要充分发挥其潜力,我们需要在技术实现、交互设计、隐私保护等多个方面继续努力。

对于组织和个人来说,现在正是开始尝试和适应这种新型工作方式的好时机。通过谨慎的规划和循序渐进的实施,我们可以逐步实现工作方式的升级,让 AI 更好地服务于人类的需求。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
### LangChain AI Agent Overview An AI agent within the context of LangChain represents an entity capable of performing tasks autonomously by engaging with its environment. Such agents play a crucial role in diverse AI applications like robotics, autonomous systems, and interactive virtual assistants[^1]. The essence of these agents lies in their capacity to perceive surroundings via sensors, apply reasoning based on current states through algorithms, and execute actions using actuators. For LangChain specifically, this framework facilitates building conversational models that can interact intelligently with users or other software components. By leveraging pre-built functions provided by libraries such as `langgraph`, developers gain access to powerful tools for crafting sophisticated dialogue management solutions without needing deep expertise across multiple domains. ### Implementation Example Using Pre-Built Functions To demonstrate how one might implement a simple yet effective AI agent utilizing LangChain's capabilities: ```python from langgraph.prebuilt import create_react_agent agent_executor = create_react_agent(model, tools) response = agent_executor.invoke( { "messages": [ HumanMessage(content="What's the weather in Beijing?") ] } ) print(response["messages"]) ``` This code snippet showcases creating an instance of a reactive agent (`create_react_agent`) which takes two parameters: `model` representing machine learning model used for processing input data; and `tools`, referring to any additional resources required during execution. After invoking the method with user query regarding weather conditions in Beijing, it returns processed information contained inside `"messages"` key from dictionary object returned by `.invoke()` function call[^2]. ### Use Cases For LangChain Agents LangChain-powered agents find application in numerous scenarios where automated interaction between machines and humans proves beneficial. Examples include but are not limited to customer service chatbots providing instant support around-the-clock, personal assistants helping manage daily schedules efficiently, educational platforms offering personalized tutoring experiences tailored towards individual learner needs, healthcare services enabling remote monitoring while ensuring timely interventions when necessary, among others.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值