专注AIGC领域的专业社区,关注微软&OpenAI、百度文心一言、讯飞星火等大语言模型(LLM)的发展和_应用_落地,聚焦LLM的市场研究和AIGC开发者生态,欢迎关注!
今早8点,OpenAI东京分部进行了技术直播,发布了全新模型——Deep Research。
与传统大模型不同的是,Deep Research能够像人类分析师一样,对复杂的任务进行逐步分解,并在互联网上进行多轮的信息搜索与验证。会根据已有的信息逐步调整研究方向和策略,不断深入挖掘问题的本质,直到找到最合适的答案。
例如,在处理一个关于特定市场趋势的研究任务时,模型首先会通过关键词搜索获取初步信息,然后根据这些信息进一步查找相关的行业报告、统计数据、专家观点等,对不同来源的信息进行对比分析,最终形成一份综合性的研究报告。
值得一提的是, OpenAI非常罕见地与全球爆火的开源模型DeepSeek-R1进行了对比,在人类最后考试测试中达到了恐怖的26.6%,是R1的2.8倍,同时刷新了之前创造的最好记录18.2%。
直播图
其实今天是美国的周末,就算是东京分公司今早9点(比国内快1小时)就开始直播也够拼的了。
按照OpenAI以往的惯例,发布重要技术产品通常会从周二开始,可见DeepSeek对其造成了多大的影响,这是攒足了大招要全面反攻。其实单从这个模型的名字就能看出来寓意啦~
Deep Research简单介绍
「AIGC开放社区」根据直播观看到的内容,为大家简单介绍一下Deep Research的技术特点和优势。
Deep Research是基于OpenAI的o3模型之上开发而成的,并针对多种特定任务进行了深度优化和精调。
端到端强化学习是 Deep Research 的关键所在。传统的机器学习方法在处理复杂任务时,往往需要人为地划分多个阶段进行训练和优化,而端到端强化学习则让模型从输入到输出进行整体的学习和优化。
Deep Research通过这种学习方式,学会了规划和执行多步骤的研究轨迹。在面对一个复杂的研究课题时,它能够像人类研究者一样,制定出合理的研究计划,先确定从哪些渠道获取信息,然后根据获取到的信息进行分析,判断下一步的研究方向。
如果在研究过程中发现之前的计划存在偏差,它还能像经验丰富的研究者一样进行回溯,重新调整研究策略,确保最终能得到准确且有价值的结果。
完整技术直播
在这个学习过程中,模型不断地与环境进行交互,从环境反馈中学习最优的行为策略。在浏览网页获取信息时,模型会根据网页内容的相关性、可信度等因素,决定是否深入浏览该网页,以及如何提取其中有用的信息。
这种基于实时信息进行决策和调整的能力,是 Deep Research 能够高效完成复杂研究任务的重要保障。
除了端到端强化学习,去除模型的响应限制也是 Deep Research 的重要技术突破。传统的大模型为了追求快速响应,往往在处理复杂问题时只能浅尝辄止,无法进行深入的思考和分析。
Deep Research 打破了这一限制,允许模型花费5 —30 分钟甚至更长时间来处理问题。这使得模型有足够的时间对海量的网络信息进行筛选、分析和整合,从而能够输出更加全面、深入、准确的研究成果。
例如,在进行市场调研类任务时,模型可以花费足够的时间去收集不同地区、不同时间段的市场数据,对市场趋势进行更精准的预测;
在学术研究领域,它能够深入研读大量的文献资料,挖掘出不同研究之间的潜在联系,为科研工作者提供更具价值的研究思路。
Deep Research主要模块
Deep Research模型由多个模块组成,有点类似分层的AI Agent协同工作。信息发现模块,能够快速定位到各类网站、文档、数据库等信息源,并从中提取出有价值的线索。当用户想要了解某一特定疾病的最新研究进展时,信息发现模块会迅速在学术数据库、科研机构网站、医学论坛等多个平台上搜索相关的论文、研究报告、专家观点等信息,为后续的分析和综合提供丰富的素材。
信息发现模块还具备强大的信息筛选能力。它能够根据关键词、语义关联、信息的时效性和可信度等多个维度对搜索到的信息进行初步筛选,排除那些与用户问题无关或价值较低的信息,大大提高了信息处理的效率和质量。在筛选过程中,它会运用自然语言处理技术对信息内容进行分析,准确理解信息的含义,确保筛选出的信息与用户需求高度匹配。
信息综合模块,能将来自不同渠道的信息进行整合和梳理,识别出信息之间的逻辑关系,将零散的信息组织成一个有条理的整体。
例如,在进行科技领域的研究时,信息综合模块可能会将关于某一新技术的原理介绍、应用案例、发展趋势等不同方面的信息进行融合,形成一份系统的技术报告。在这个过程中,不仅会整合文字信息,还会对图片、表格、数据等多种形式的信息进行处理和分析,使最终的研究成果更加丰富和全面。
信息综合模块还具备信息提炼的能力,能够从大量的信息中提取出关键要点,去除冗余信息,使研究成果更加简洁明了。在处理一篇冗长的学术论文时,能够准确提炼出论文的核心观点、研究方法、主要结论等重要内容,帮助用户快速了解论文的精髓,节省阅读和分析的时间。
Deep Research 的推理模块是其核心功能之一,可以像人类一样的思考和判断能力。在面对复杂的问题时,推理模块能够运用逻辑推理、知识图谱等技术,对收集到的信息进行深入分析和推理。在解答科学问题时,推理模块会根据已知的科学原理和事实,对问题进行逐步推导和论证,得出合理的结论。在分析市场趋势时,会结合历史数据、市场动态、行业政策等多方面信息,运用经济学原理和数据分析方法,预测市场的未来走向。
推理模块还具备自我修正和优化的能力。在推理过程中,如果发现新的信息与之前的推理结果存在矛盾,它会重新审视推理过程,调整推理策略,确保最终的结论更加准确可靠。在研究某一历史事件时,随着新的历史资料被发现,推理模块会根据这些新资料对之前的研究结论进行修正和完善,使研究成果更加符合历史事实。
Deep Research 的输出模块致力于为用户提供高质量的研究成果呈现。能够根据用户的需求,将研究结果以不同的格式输出,如报告、论文、图表等。当用户需要进行市场分析时,输出模块可以生成一份格式规范、内容详实的市场调研报告,其中包含清晰的文字阐述、直观的图表展示以及准确的数据引用,方便用户进行决策和汇报。
Deep Research测试数据
AI安全与规模中心发布的 “人类的最后一次考试”,是一项涵盖广泛知识领域的基准测试。包含约 3000 个简答题和多项选择题 ,涉及约 100 个不同学科。在这项测试中,Deep Research 模型的准确率达到 26.6%,超过R1、o1、Grok2等知名开闭源模型。
Gaia 主要用于衡量模型的议程能力,对网络浏览、多模态能力、代码执行以及文件推理等方面有严格要求,且设置了三个难度级别。Deep Research在 Gaia 测试的所有三个难度级别上都达到了全新新高度。
此外,OpenAI 设计了一系列内部基准测试,涵盖 市场研究、学术研究、消费决策 等多个实际应用场景。在专家级别的任务中,Deep Research 能够完成那些专家需要数小时才能完成的任务。
目前,Deep Research将很快给Pro用户使用,随后扩大至Plus和team等。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈