大模型生成过程可视化开源工具、Zerosearch误读及开源项目中的RAG文档解析问题

我们今天来看大模型生成过程可视化开源工具、Zerosearch误读及开源项目中的RAG文档解析问题

具体的:

一个是大模型可解释可视化的几个揭示工具,通过获取大模型推理的中间步骤,结合可视化渲染工具,可以得到一些直观化的认识,从而达到一种可解释性的效果

另一个是技术上的一些有趣发现和挖掘思路,包括关于zerosearch的误读、如何发现文档解析相关的问题和优化思路,都有哪些问题?做个记录,深入理解。

抓住根本问题,做根因,专题化,体系化,会有更多深度思考。大家一起加油。

一、大模型生成过程可视化的几个工具

我们来看大模型生成可视化工具进展,陆陆续续的,已经有几个了,下面看三个,这个可以用于模型内部机制探索,可解释性研究等。

1、OpenMAV

通过交互式终端界面,可实时可视化 LLM 在生成文本时的内部状态,包括注意力分布、MLP 激活值和 Token 预测概率等,https://github.com/attentionmech/mav,除此之外,还可通过插件轻松扩展可视化功能,并支持多种模型,如GPT-2、Llama等。

img

就是把里面的状态,每一步预测的token时,底层每一层的相应数值取出来,做一个动态可视化。但这类只能观察到内部的数值变化,怎么可解释,只能诸葛亮解读了,像极了话语分析。

这个我们在《知识图谱+知识库RAG项目Yuxi-Know及大模型推理内部可视化工具OpenMAV实现拆解》 (https://mp.weixin.qq.com/s/6mT-zDxv3n4vD7s9TijblQ)中有过介绍。

2、logitloom

logitloom探索指令和基础模型中的token轨迹树,提供可视化树状结构,直观展示token生成路径,https://github.com/vgel/logitloom

img

其中每一步的结果如下,可以看到概率以及token值;

img

3、ReasonGraph

大模型推理过程可视化,这个是针对推理类大模型来说的,ReasonGraph,https://github.com/ZongqianLi/ReasonGraph,

img

直观展示和分析多种推理方法的执行过程,集成了链式思考、自我改进等各类推理方法。

例如:Chain-of-Thoughts(思维链):线性推理过程的可视化。呈现为线性的有向图结构,每个节点代表一个推理步骤,节点之间通过箭头连接,节点内容包含具体的推理文本,最后一个节点(绿色)显示最终结论,适合数学问题求解、逻辑推理题;

Self-refine(自我改进):迭代优化过程的展示。采用迭代式的环形结构,初始推理结果用蓝色节点表示,改进步骤用黄色节点标注,箭头指示推理优化的方向,适合文本生成优化、答案改进

Least-to-Most(由简到繁):问题分解和逐步解决的可视化。层级树状结构,顶层节点(浅蓝色)是原始问题,中间层节点是分解后的子问题,底层节点(绿色)是各个子问题的解答,最终汇总节点显示完整解决方案,适合复杂问题分解、步骤化解答

Self-consistency(自洽性):多路径推理的对比分析。并行的多路径结构,多个起始节点代表不同的推理路径,每条路径独立发展,最终通过投票机制(中心节点)汇总结果,适合需要多角度验证的问题

Tree-of-Thoughts(思维树):分支推理过程的树状展示。完整的树状结构,每个分支代表一个可能的推理方向,节点可以动态展开和收缩,支持深度优先和广度优先的探索,适合开放性问题、多方案对比

Beam Search(束搜索)可视化:评分驱动的树状结构,每个节点都有关联的评分,保持固定宽度的搜索束,最优路径用深色突出显示,适合需要定量评估的决策问题;

img

一、技术上的一些有趣发现和挖掘思路

1、zerosearch的误读

第一个事情,昨日有个工作很有趣,在社区引起了一个讨论,《ZeroSearch》,https://alibaba-nlp.github.io/ZeroSearch/,https://github.com/Alibaba-nlp/ZeroSearch,https://huggingface.co/collections/sunhaonlp/zerosearch,https://arxiv.org/pdf/2505.04588。核心是模拟搜索引擎的方式,基于大模型自身的知识,将大模型微调为模拟搜索引擎,根据查询自己生成相关或噪声文档,从而激励大模型的搜索能力,达成训练目标,目的是为了降低训练数据成本。在这个训练过程中,避免与真实搜索引擎(如谷歌)的交互,从而降低成本和不可控性。

这个在文章的介绍中已经有过说明,如下:

img

但是,目前有不少文章,引导出了一些误区。我们可以看看,主要集中在于:1、Zerosearch不是一个搜索引擎【它是一个强化学习框架,是用来做大模型搜索行为推理能力增强的框架,不是搜索引擎】;2、Zerosearch只是在训练过程中省了真实搜索引擎交互,这个跟超越什么谷歌搜索没啥关系(并且也是蒸馏了谷歌api的数正负样本去做了微调);3、Zerosearch跟搜索引擎没任何关系,并且其在应用落地端并没有太多可行性,这是面向强化学习训练阶段而做的工作,不是为了解决AI搜索、RAG等应用问题而做的。

2、开源项目中的RAG文档解析问题

我们可以看github项目的update log 以及issue找到一些思路。

例如:在https://github.com/netease-youdao/QAnything/blob/qanything-v2/README_zh.md,里面可以看到RAG框架qanything-v2处理文档时碰到的文档解析问题以及修改方式。

例如:通过更合理的分块长度,减少了因段落过小或段落不完整而导致的语义和逻辑上的丢失;改进了对分栏文本的识别能力,能够智能判断阅读顺序,即使是跨页的段落也能做出正确处理;新版本能够识别并保存文本段落中的图片和表格,确保不会遗漏任何重要的文本信息;

优化表格解析,包括超出chunk块限制的长表格和复杂结构的xlsx文件的解析和存储;根据识别文档中的小标题,定位和组织对应的文本块,使得解析的结构更加清晰,信息层次更加分明;优化对于网页url的解析结果,转为.md格式;支持更多编码格式的txt文件和docx文件。

又如,miner-u中的解析问题,https://github.com/opendatalab/MinerU/blob/master/README_zh-CN.md,阅读顺序基于模型对可阅读内容在空间中的分布进行排序,在极端复杂的排版下可能会部分区域乱序;不支持竖排文字;目录和列表通过规则进行识别,少部分不常见的列表形式可能无法识别;

代码块在layout模型里还没有支持;漫画书、艺术图册、小学教材、习题尚不能很好解析;表格识别在复杂表格上可能会出现行/列识别错误;在小语种PDF上,OCR识别可能会出现字符不准确的情况(如拉丁文的重音符号、阿拉伯文易混淆字符等);部分公式可能会无法在markdown中渲染。

这些问题,对于我们进行算法设计、系统设计上,都有很大的帮助

总结

本文主要介绍了关于大模型内部运作机制可解释以及技术上的一些有趣发现、挖掘思路。这些都可以应用于我们的实际开发当中,值得看看。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值