摘要
人工智能(AI)在医疗保健应用中具有巨大潜力,但由于医疗保健数据的多样性、可能任务的复杂范围以及需要保护隐私的要求,其训练和部署具有挑战性。在各种医疗任务上表现良好且需要较少特定任务调整数据的基础模型,对于加速开发用于医疗保健应用的AI至关重要。在本技术报告中,我们介绍了MedGemma,这是基于Gemma 3 4B和27B的新一批医疗视觉-语言基础模型集合。MedGemma在图像和文本上展示了先进的医学理解和推理能力,显著超越了类似大小的生成模型的性能,并接近特定任务模型的性能,同时保持了Gemma 3基础模型的通用能力。对于超出分布的任务,与基础模型相比,MedGemma在医学多模态问答上提高了2.6-10%,在胸部X光发现分类上提高了15.5-18.1%,在代理评估上提高了10.8%。微调MedGemma进一步提升了子域性能,电子健康记录信息检索的错误减少了50%,并且在气胸分类和组织病理学补丁类型分类方面达到了与现有专业最先进方法相当的水平。我们还介绍了MedSigLIP,这是从SigLIP衍生出的医学调整的视觉编码器。MedSigLIP增强了MedGemma的视觉理解能力,作为编码器,其性能可与或优于专业的医学图像编码器相媲美。综合来看,MedGemma集合提供了强大的医学图像和文本能力基础,具有显著加速医学研究和下游应用开发的潜力。有关MedGemma集合的更多详细信息,包括下载模型权重的教程和说明,可在https://goo.gle/medgemma找到。
-
https://deepmind.google/models/gemma/medgemma/
-
https://research.google/blog/medgemma-our-most-capable-open-models-for-health-ai-development/
-
https://medgemma.org/
核心速览
研究背景
- 研究问题
:这篇文章要解决的问题是如何在医疗领域利用人工智能(AI)进行有效的图像和文本理解,特别是针对医疗图像和文本的多模态任务。
- 研究难点
:该问题的研究难点包括:医疗数据的多样性和复杂性、任务范围的广泛性、数据隐私保护的必要性以及模型泛化能力的提升。
- 相关工作
:该问题的研究相关工作包括:最近开发的大型多模态模型(LMMs)在检测复杂模式、生成连贯文本和处理视觉信息方面的显著能力;然而,通用模型在医学理解和数据解释方面存在不足。
研究方法
这篇论文提出了MedGemma,一套基于Gemma 3的医学视觉-语言基础模型。具体来说,
-
模型架构:MedGemma模型架构基于Gemma 3,采用SigLIP 400M作为视觉编码器。输入图像分辨率为896x896,像素值归一化到[-1, 1]。语言模型部分也遵循Gemma 3,具有任意图像-文本交错和长上下文(128k)。
-
数据预处理:图像填充和调整大小算法与Gemma 3相同,但图像调整为896x896分辨率。使用SentencePiece分词器,包含262,000个条目。对于CT图像,选择三个窗口并转换为RGB颜色通道以突出显示骨骼和肺部、软组织、大脑。
-
预训练和多模态解码器预训练:首先对视觉编码器进行微调,使用超过33M的医疗图像-文本对。然后,在原始Gemma 3预训练检查点上继续预训练,混合医疗图像数据(10%)进行约5个epoch的训练。
-
后训练:在后训练阶段,结合蒸馏和强化学习(RL)进行进一步训练。蒸馏阶段加入医疗文本数据,RL阶段使用配对的医学成像数据进行训练。
实验设计
- 数据集
:训练数据集包括文本数据集和多媒体数据集。文本数据集从多个医学问答数据集中采样,包括MedQA、MedMCQA、PubMedQA等。多媒体数据集包括MIMIC-CXR、CheXpert、PathMCQA等。
- 数据预处理
:图像填充和调整大小算法与Gemma 3相同,但图像调整为896x896分辨率。使用SentencePiece分词器,包含262,000个条目。对于CT图像,选择三个窗口并转换为RGB颜色通道以突出显示骨骼和肺部、软组织、大脑。
- 模型训练
:预训练和多模态解码器预训练在原始Gemma 3预训练检查点上进行,混合医疗图像数据(10%)进行约5个epoch的训练。后训练阶段结合蒸馏和强化学习(RL)进行进一步训练。
结果与分析
-
医学文本问答:在MedQA、MedMCQA、PubMedQA等医学问答任务上,MedGemma 4B模型表现优于标准Gemma 3模型,并且在许多情况下与更大的模型竞争。
-
医学图像分类:在MIMIC-CXR、CheXpert、PathMCQA等医学图像分类任务上,MedGemma 4B模型表现显著优于Gemma 3基线模型,并且与更大的API模型相当。
-
医学视觉问答:在SLAKE和VQA-RAD等医学视觉问答任务上,MedGemma 4B模型表现优于标准Gemma 3模型,并且在许多情况下与更大的模型竞争。
-
胸部X光报告生成:在MIMIC-CXR数据集上,MedGemma 4B模型生成的报告在印象和发现部分的表现接近或优于原始放射科医生的报告。
-
代理行为:在AgentClinic模拟临床环境中,MedGemma 27B模型表现优于Gemma 3 27B模型,并且在某些情况下接近更大模型的性能。
总体与展望
这篇论文展示了MedGemma模型在多种医学视觉-语言和文本任务中的强大能力。MedGemma模型在医学图像和文本理解方面表现出色,并且在细分子任务上通过微调进一步提升了性能。MedGemma模型的开放性和灵活性使其成为医疗AI应用开发的有力起点。
MedGemma作为Google DeepMind的旗舰级医学AI,适配多模态(图文)和深度文本分析场景,且上手门槛低,开放性强,是开发智能医疗产品、医学研究创新与辅助临床决策的极具潜力的基础设施。
未来,MedGemma将在多语言医学术语和更广泛的场景适配方面持续优化,也将在临床监管合规和实际医疗流程中扮演越来越重要的角色
论文评价
优点与创新
- 医学领域的优化
:MedGemma模型在预训练和微调阶段都优化了医学领域的数据,显著提高了在各种医学基准测试上的性能。
- 多模态能力
:MedGemma模型不仅能够处理文本,还能处理图像,展示了其在多模态任务中的强大能力。
- 细粒度医学理解
:MedGemma在医学图像分类、视觉问答和报告生成等任务中表现出色,展示了其在医学领域的细粒度理解能力。
- 细调提升性能
:通过在特定领域(如胸部X光报告生成、组织病理学分类和电子健康记录信息检索)进行细调,MedGemma的性能进一步提升。
- MedSigLIP
:引入了MedSigLIP,一个医学调优的视觉编码器,进一步增强了MedGemma的图像解释能力。
- 开放模型
:MedGemma和MedSigLIP模型是开源的,便于社区广泛评估、改进和适应。
- 多样化的应用场景
:MedGemma模型适用于多种应用场景,包括医学图像检索、临床决策支持、患者匹配和研究队列开发等。
不足与反思
- 自动化基准的局限性
:尽管自动化基准提供了初步的验证,但它们并不代表真实世界的实用性。未来的工作需要在新、高质量的基准上进行评估,以更好地反映真实世界的应用。
- 基准饱和
:一些基准可能已经接近饱和,进步空间有限,这阻碍了对进展的测量。
- 实际应用开发的性能和能力需求
:需要进一步理解实际应用开发中的性能和能力需求,包括在代理框架中的整合。
- EHRQA数据集的限制
:EHRQA数据集中缺乏临床笔记,未来工作将致力于解决这一问题。
- 模型版本扩展
:未来的研究将开发具有扩展能力的未来模型版本,以满足更广泛的用例需求。
关键问题及回答
问题1:MedGemma模型在医学图像分类任务上的具体表现如何?
在医学图像分类任务上,MedGemma 4B模型表现显著优于Gemma 3基线模型,并且与更大的API模型相当。具体来说,MedGemma 4B在MIMIC-CXR、CheXpert、PathMCQA等数据集上的分类准确率分别达到了88.9%(MIMIC-CXR)、48.1%(CheXpert)和69.8%(PathMCQA)。这些结果表明,MedGemma模型在处理医学图像分类任务时具有较高的准确性和鲁棒性。
问题2:MedGemma模型在胸部X光报告生成任务上的表现如何?
在胸部X光报告生成任务上,MedGemma 4B模型生成的报告在印象和发现部分的表现接近或优于原始放射科医生的报告。具体来说,使用RadGraph F1指标评估,MedGemma 4B在MIMIC-CXR数据集上的表现为29.5,接近现有最先进模型的表现(30.0)。此外,人类专家评估显示,68%的正常研究和49%的异常研究报告与原始报告相当或更好,总体上有81%的报告在临床决策上与原始报告一致或更优。
问题3:MedGemma模型在代理行为任务上的表现如何?
在代理行为任务上,MedGemma 27B模型表现优于Gemma 3 27B模型,并且在某些情况下接近更大模型的性能。具体来说,在AgentClinic模拟临床环境中,MedGemma 27B在文本环境下的AgentClinic-MedQA准确率为56.2%,在多模态环境下的AgentClinic-MIMIC-IV准确率为46.0%。这些结果表明,MedGemma模型能够在复杂的模拟临床环境中有效地进行对话驱动的患者病史采集、检查和诊断。
如何学习AI大模型 ?
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
(👆👆👆安全链接,放心点击)
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。(全套教程文末领取哈)
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
只要你是真心想学AI大模型,我这份资料就可以无偿分享给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!
这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。
资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
(👆👆👆安全链接,放心点击)