tf.get_variable()的使用方法

参数数量及其作用
该函数共有十一个参数,常用的有:名称name、变量规格shape、变量类型dtype、变量初始化方式initializer、所属于的集合collections。

 def get_variable(name,
                  shape=None,
                  dtype=None,
                  initializer=None,
                  regularizer=None,
                  trainable=True,
                  collections=None,
                  caching_device=None,
                  partitioner=None,
                  validate_shape=True,
                  use_resource=None,
                  custom_getter=None):

该函数的作用是创建新的tensorflow变量,常见的initializer有:常量初始化器tf.constant_initializer、正太分布初始化器tf.random_normal_initializer、截断正态分布初始化器tf.truncated_normal_initializer、均匀分布初始化器tf.random_uniform_initializer。

例子
该例子将分别讲述常见的几种initializer的使用方法

# 初始化
def testInitializer():
    """
    如果你定义的变量名称在之前已被定义过,则TensorFlow 会引发异常。
    可使用tf.get_variable( ) 函数代替tf.Variable( )。
    如果变量存在,函数tf.get_variable( ) 会返回现有的变量。
    如果变量不存在,会根据给定形状和初始值创建变量。

    该函数的作用是创建新的tensorflow变量,
    常见的initializer有:
        1.常量初始化器:tf.constant_initializer
        2.正太分布初始化器:tf.random_normal_initializer
        3.截断正态分布初始化器:tf.truncated_normal_initializer
        4.均匀分布初始化器:tf.random_uniform_initializer
        5.tf.contrib.layers.xavier_initializer:
            该函数返回一个用于初始化权重的初始化程序 “Xavier” 。
            这个初始化器是用来保持每一层的梯度大小都差不多相同。
            参数:
                uniform: 使用uniform或者normal分布来随机初始化。默认uniform
                seed: 可以认为是用来生成随机数的seed
                dtype: 只支持浮点数。
            返回值:
                初始化权重矩阵

    """
    # 常量初始化器
    v1_cons = tf.get_variable('v1_cons', shape=[1, 4], initializer=tf.constant_initializer()) # 用0初始化
    v2_cons = tf.get_variable('v2_cons', shape=[1, 4], initializer=tf.constant_initializer(9)) # 用9初始化
    v3_cons = tf.get_variable('v3_cons', shape=[1, 4], initializer=tf.zeros_initializer()) # 用0初始化
    v4_cons = tf.get_variable('v4_cons', shape=[1, 4], initializer=tf.ones_initializer()) # 用1初始化

    # 正太分布初始化器
    v1_nor = tf.get_variable('v1_nor', shape=[1, 4], initializer=tf.random_normal_initializer())
    v2_nor = tf.get_variable('v2_nor', shape=[1, 4], initializer=tf.random_normal_initializer(mean=0, stddev=5, seed=0))  # 均值、方差、种子值

    # 截断正态分布初始化器
    v1_trun = tf.get_variable('v1_trun', shape=[1, 4], initializer=tf.truncated_normal_initializer())
    v2_trun = tf.get_variable('v2_trun', shape=[1, 4], initializer=tf.truncated_normal_initializer(mean=0, stddev=5, seed=0))  # 均值、方差、种子值

    # 均匀分布初始化器
    v1_uni = tf.get_variable('v1_uni', shape=[1, 4], initializer=tf.random_uniform_initializer())
    v2_uni = tf.get_variable('v2_uni', shape=[1, 4], initializer=tf.random_uniform_initializer(maxval=-1., minval=1., seed=0))  # 最大值、最小值、种子值

    with tf.compat.v1.Session() as session:
        session.run(tf.global_variables_initializer())
        print("常量初始化器v1_cons:", session.run(v1_cons))
        print("常量初始化器v2_cons:", session.run(v2_cons))
        print("正太分布初始化器v1_nor:", session.run(v1_nor))
        print("正太分布初始化器v2_nor:", session.run(v2_nor))
        print("截断正态分布初始化器v1_trun:", session.run(v1_trun))
        print("截断正态分布初始化器v2_trun:", session.run(v2_trun))
        print("均匀分布初始化器v1_uni:", session.run(v1_uni))
        print("均匀分布初始化器v2_uni:", session.run(v2_uni))

运行结果:

常量初始化器v1_cons: [[0. 0. 0. 0.]]
常量初始化器v2_cons: [[9. 9. 9. 9.]]
常量初始化器v3_cons: [[0. 0. 0. 0.]]
常量初始化器v4_cons: [[1. 1. 1. 1.]]
正太分布初始化器v1_nor: [[-0.72394335 -0.96410173  0.06103099  0.39317042]]
正太分布初始化器v2_nor: [[-1.9957881 10.522196   0.8553612  2.7325907]]
截断正态分布初始化器v1_trun: [[-0.3574269 -1.5260212 -1.156451   0.6296464]]
截断正态分布初始化器v2_trun: [[-1.9957881  0.8553612  2.7325907  2.1127698]]
均匀分布初始化器v1_uni: [[0.91868734 0.73822    0.02020836 0.3000238 ]]
均匀分布初始化器v2_uni: [[ 0.79827476 -0.9403336  -0.69752836  0.9034374 ]]
<think>好的,用户问的是能否替换TensorFlow中的tf.get_variable,我需要详细解释一下。首先,得考虑用户使用TensorFlow版本,因为如果是TF2.x的话,tf.get_variable可能已经被弃用了。不过也有可能用户还在用TF1.x,所以需要分别说明两种情况。 在TF1.x中,tf.get_variable通常与variable_scope一起使用,特别是在需要变量共享时,比如在RNN中。这时候替换的话,可能需要用tf.Variable,但要注意是否涉及变量重用(reuse),因为在TF2.x中移除了这种机制,转而支持更Pythonic的方式,比如对象共享。 对于TF2.x,推荐使用tf.keras.layers.Layer或者tf.Module来管理变量。例如,自定义层中的build方法使用add_variable,这其实和tf.Variable类似,但集成在Keras的框架里,方便管理。另外,eager execution在TF2.x是默认开启的,所以变量会立即创建,而不需要像TF1.x那样通过session运行。 用户可能需要替换的原因可能是迁移到TF2.x,或者想用更简洁的API。需要指出替换的方法以及注意事项,比如变量共享如何通过Python作用域或者对象实例来实现,而不是通过variable_scope。还要提到兼容性,比如使用tf.compat.v1模块可以继续使用旧的API,但不建议长期使用。 另外,可能用户对变量初始化和命名有特定需求,这时候用tf.Variable配合不同的initializer可能更直接。同时,如果用户在使用Keras,那么层中的变量会自动管理,可能不需要手动创建变量,这也是一个替代方案。 需要总结一下,替换是可行的,但要根据TF版本和具体需求来选择方法。同时提醒用户检查代码中是否有依赖于variable_scope或reuse的地方,这些在TF2.x中需要重构。可能用户的问题背后是想迁移代码到TF2,或者简化现有代码结构,所以给出迁移指南的链接可能会有帮助。</think>在 TensorFlow 中,`tf.get_variable` 是早期版本(如 TF1.x)中用于创建或获取变量的核心函数,通常与 `variable_scope` 配合使用。随着 TensorFlow 2.x 的发布,许多旧 API 被弃用或替换为更简洁的接口。以下是关于替换 `tf.get_variable` 的详细说明: -- ### **1. TensorFlow 1.x 中的 `tf.get_variable`** 在 TF1.x 中,`tf.get_variable` 主要用于: - 在变量共享(variable reuse)时创建/获取变量。 - 通过 `variable_scope` 控制变量的命名空间。 例如: ```python with tf.variable_scope("my_scope"): weights = tf.get_variable("weights", shape=[10, 5], initializer=tf.glorot_uniform_initializer()) ``` --- ### **2. TensorFlow 2.x 中的替代方案** 在 TF2.x 中,`tf.get_variable` 已被弃用,推荐使用以下方法: #### **(1) 直接使用 `tf.Variable`** - 如果不需要变量共享,直接使用 `tf.Variable`: ```python weights = tf.Variable( initial_value=tf.random.normal([10, 5]), name="weights" ) ``` #### **(2) 通过 `tf.keras` 管理变量** - 使用 Keras 层(如 `Dense`, `Conv2D`)会自动创建和管理变量: ```python layer = tf.keras.layers.Dense(units=5, kernel_initializer="glorot_uniform") output = layer(inputs) ``` - 自定义层时,在 `build` 方法使用 `add_weight`: ```python class MyLayer(tf.keras.layers.Layer): def build(self, input_shape): self.weights = self.add_weight( name="weights", shape=(input_shape[-1], 5), initializer="glorot_uniform" ) def call(self, inputs): return tf.matmul(inputs, self.weights) ``` #### **(3) 通过 `tf.Module` 管理变量** - 使用 `tf.Module` 组织变量: ```python class MyModule(tf.Module): def __init__(self): self.weights = tf.Variable( tf.random.normal([10, 5]), name="weights" ) ``` --- ### **3. 变量共享的替代方案** 在 TF1.x 中,变量共享通过 `variable_scope(reuse=True)` 实现。在 TF2.x 中: - **直接通过对象实例共享变量**(面向对象的方式): ```python # 定义一个共享的层/模块 shared_layer = tf.keras.layers.Dense(5) # 多次调用同一实例会复用变量 output1 = shared_layer(inputs1) output2 = shared_layer(inputs2) ``` - **避免全局变量共享**,改用 Python 对象封装。 --- ### **4. 注意事项** - **命名空间**:TF2.x 中不再需要 `variable_scope`,变量名称会自动包含父对象的名称(如层名)。 - **兼容模式**:如果需在 TF2.x 中运行旧代码,可使用 `tf.compat.v1.get_variable`,但建议逐步迁移到新 API。 - **Eager Execution**:TF2.x 默认启用即时执行,变量会立即创建,无需 `tf.Session`。 -- ### **总结** - **可以替换**:在 TF2.x 中,推荐使用 `tf.Variable`、Keras 层或 `tf.Module` 替代 `tf.get_variable`。 - **迁移工具**:使用 `tf_upgrade_v2` 工具自动迁移旧代码,但需手动检查变量共享逻辑。 - **最佳实践**:以面向对象的方式组织模型(继承 `tf.keras.Model` 或 `tf.Module`)。 如果有具体的代码场景,可以提供更多细节,我可以给出更针对性的建议!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值